As per the latest syllabus
Prescribed by the CISCE

COMPUTER,

L 4
APPLICATIONS ¢

(Subject Code - 86)

With BlueJ ~ PalviGupta

M.Tech, B.E.
(Computer Sceince & Engineering)
D.A.V. University, Jalandhar

Inventant
@ Education

Present Meets Future

Inventant
% Education

Present Meets Future
(A Unit of EDULABZ International)

D-47, Sector 2, Noida, Uttar Pradesh-201301
Email : info@inventanteducation.com
Customer care number: 18002022912

Disclaimer

This educational material, developed by Inventant Education, focuses on STEM education. While we strive for accuracy, we do not guarantee
completeness or suitability for all purposes. Inventant Education is not liable for any damages resulting from the material’s use or any
inadvertent omissions or errors. References to products, services, or organizations are for informational purposes and do not imply endorsement.

First Edition : October, 2024
Price: ¥589

Copyright
© Inventant Education, a unit of Edulabz International

All rights reserved. No part of this educational material may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Inventant Education. Permission
is granted to educational institutions for classroom use, provided that the material is used for non-commercial, educational purposes and is
not sold or distributed for profit. For any other use, please seek written permission from Inventant Education. Inventant Education and the
Inventant Education logo are registered trademarks of Inventant Education and/or its subsidiaries. All other trademarks and trade names are
the property of their respective owners.

Printed at Plasticote (India), Noida

Preface

The Class 9th and 10th ICSE Computer Applications book is designed to introduce students to the exciting and rapidly
evolving world of computer science. It serves as a comprehensive guide that lays a solid foundation in programming and other
essential computing concepts. The book is structured to align with the ICSE (Indian Certificate of Secondary Education)
syllabus, ensuring that all relevant topics are covered systematically and in-depth, preparing students for both academic
success and practical application.

Key Features of the Book:

1.

10.

1.

12.

13.

Introduction to Basic Computer Concepts: The book begins with fundamental concepts. This forms a strong
foundation for understanding advanced topics.

Object-Oriented Programming (OOP): The primary focus of the book is on Java programming, an object-
oriented language. Students are introduced to the core principles of OOP, such as classes, objects, inheritance, and
polymorphism, which are critical for modern software development. The book uses simple and clear examples to
explain these concepts, making it easier for students to grasp.

Programming Basics: Students learn the syntax of Java and are guided step-by-step through writing their first
programs. They are taught how to use variables, data types, operators, Iterative, nested and conditional statements
to build simple applications.

Problem-Solving Skills: The book emphasizes logical thinking and problem-solving through coding exercises.
It includes a variety of practical programming examples and challenges to encourage students to apply their
knowledge in real-world scenarios. This approach not only enhances their programming skills but also improves
their analytical thinking.

Graphical User Interface (GUI) Programming: One of the standout features of the book is its introduction to GUI
programming, where students learn how to create interactive applications. They are guided through the basics
of designing user interfaces with buttons, text fields, and other controls, providing them with the tools to create
functional and user-friendly programs.

Exercises and Projects: At the end of each chapter, there are exercises that include both theoretical and practical
questions to test students’ understanding of the material. Additionally, project work is assigned to help students
consolidate their learning by developing larger, more complex applications. These projects often mimic real-world
problems, fostering creativity and deeper learning.

ICSE Examination Preparation: The book is structured to help students prepare effectively for the ICSE exams.
It includes model questions, Java Programming, and previous year’s exam questions, providing ample practice for
students to master the format and style of the exam.

Learning Objectives: Clearly define what students will learn by the end of each chapter.

Definition: Provide clear and concise definitions of important terms to help students understand concepts better. It
should be simple, concise, and relevant to the topic at hand.

Extra Time: Suggested activities or extensions for students who finish early or need additional challenges. It ensures
that fast learners stay engaged and deepen their knowledge.

Know More: Provide additional facts or insights to encourage deeper understanding of the topic. This section spark
curiosity and provide context or trivia related to the topic.

Lab Activity: Hands-on exercises that allow students to apply theoretical concepts in practical scenarios. It enhances
understanding by giving students the opportunity to experiment with the software.

Teacher Notes: Provide teachers with background information, teaching tips, and key points to emphasize during
the lesson. It supports educators by offering guidance on how to deliver content effectively.

Teacher’s Resource Book: Provides lesson plans and solutions to the textbook questions.
Online Support: Downloadable e-books (for teachers only)

| owe my success in this project to the unwavering support of my family. My husband’s encouragement, my son
Sidharth’s joy, my parents’ guidance, and my mother-in-law’s understanding have all been crucial in helping me
achieve this balance.

Suggestions for the improvement of the book are most welcome.
—Author

Learning Objectives ®

After studying this chapter, you will be able to do:
@ Explain ethical issues

@ Understand hacking and IPR

@ Discuss malicious intent and code

3 Identify Good etiquette practices

Learning Objectives

ﬁ EXTRA TIME

Scan the QR code for more solved questions.

QR Codes

Definition

Definition

e KEYTERMS

 Privacy: Privacy refers to an individual’s right 1o control their personal information and bow it is callected,
used, and shared.

P ils protecting dats, systems, amd ks f barized aceoss, miswse, of damage,
> [hata Bthics Data ethics refers 1o the principles, values, and guidelines governing the ethical use of data,
including of privacy, security, o Tairess, and

> litellectual Property Rights Intellectus] property rights refer 10 legal protections foe creative works and
inventions, including patents, copyrights, and trademarks.

__ 'Y
[]
1
1
1
1
1
1 —
, |Lab Activity [Application]
' 1. Design a library management system. Find out the class and its objects.
1 2. Try to list the data members and methods of the identified class.
1
a

Lab Activity

SOLVED PROGRAMMING
1. Write a program to calculate the area and perimeter of the rectangle.

Ans: public class Rectangle |
public static wvoid main(String[] args) {

Java/Solved Programs

SAMPLE PROJECTS

1. Write a program in Java to display the gas bill.

Sample Project

.......R

* Objects communicate with each other by invoking methods and accessing
through well-defined interfaces, facilitating interaction and collaboration

°
1
1
- o
1
Exercises - 1 (Solved) : o
A Multiple choioe questions. [Understanding] : ° @
1. Directly copying text, word for word is called: 1
. Cyber socuriry b Crber ethics ¢ Pagiarism & All of these .
b e === = = = = = = = = e = = = = = = = = e e e e e ==)
°
1
1
1
. ——
' - Teacher’s Notes
1 = Begin the chapter by asking students about the benefits of 1
. disadvantages of the Internet.
1 ©+ Talk about the eshical and unethical practices related 1o the In
1 ~ + List some important safety measures to be taken while using 1
6 ! : .

Teacher’s Notes

SYLLABUS

COMPUTER APPLICATIONS (86)
Aims:

1. To empower students by enabling them to build their own applications.

2. To introduce students to some effective tools to enable them to enhance their knowledge, broaden horizons,
foster creativity, improve the quality of work and increase efficiency.

3. To develop logical and analytical thinking so that they can easily solve interactive programs.

4. To help students learn fundamental concepts of computing using object oriented approach in one computer
language.

5. To provide students with a clear idea of ethical issues involved in the field of computing.

CLASS IX

There will be one written paper of two hours duration carrying 100 marks and Internal Assessment of 100 marks.

THEORY — 100 Marks

1. Introduction to Object Oriented Programming concepts

(i) Principles of Object Oriented Programming, (Difference between Procedure Oriented and Object oriented).
All the four principles of Object Oriented Programming should be defined and explained using real life
examples (Data abstraction, Inheritance, Polymorphism, Encapsulation).

(ii) Introduction to JAVA - Types of java programs — Applets and Applications, Java Compilation process, Java
Source code, Byte code, Object code, Java Virtual Machine (JVM), Features of JAVA.

Definition of Java applets and Java applications with examples, steps involved in compilation process,
definitions of source code, byte code, object code, JVM, features of JAVA - Simple, Robust, secured, object
oriented, platform independent, etc.

2. Elementary Concept of Objects and Classes

Modelling entities and their behaviour by objects, a class as a specification for objects and as an object factory,
computation as message passing/method calls between objects (many examples should be done to illustrate this).
Objects encapsulate state (attributes) and have behaviour (methods). Class as a user defined data type.

A class may be regarded as a blueprint to create objects. It may be viewed as a factory that produces similar
objects. A class may also be considered as a new data type created by the user, that has its own functionality.
3. Values and data types

Character set, ASCII code, Unicode, Escape sequences, Tokens, Constants and Variables, Data types, type
conversions.

Escape sequences [\n, \t, \\, \", \'], Tokens and its types [keywords, identifiers, literals, punctuators, operators],
primitive types and non-primitive types with examples, Introduce the primitive types with size in bits and bytes,
Implicit type conversion and Explicit type conversion.

4. Operators in Java

Forms of operators, Types of operators, Counters, Accumulators, Hierarchy of operators, ‘new’ operator, dot (.)
operator.

Forms of operators (Unary, Binary, Ternary), types of operators (Arithmetic, Relational, Logical, Assignment,
Increment, Decrement, Short hand operators), Discuss precedence and associativity of operators, prefix and
postfix, Creation of dynamic memory by using new operator, invoking members of class using dot operator,
Introduce System.out.println() and System.out.print() for simple output. (Bitwise and shift operators are not
included).

5. Inputin Java

Initialization, Parameter, introduction to packages, Input streams (Scanner Class), types of errors, types of
comments.

Initialization — Data before execution, Parameters — at the time of execution, input stream - data entry during
execution — using methods of Scanner class [nextShort(), nextInt(), nextLong(), nextFloat (), nextDouble(),
next(), nextLine(), next () .charAt(0)]

Discuss different types of errors occurring during execution and compilation of the program (syntax errors,
runtime errors and logical errors).Single line comment (//) and multiline comment (/* ... */)
6. Mathematical Library Methods
Introduction to package java.lang [default], methods of Math class.
pow(x,y), sqrt(x), cbrt(x), ceil(x), floor(x), round (x), abs(a), max(a, b), min(a,b), random().

Java expressions — using all the operators and methods of Math class.

7. Conditional constructs in Java
Application of if, if else, if else if ladder, switch-case, default, break.
if, if else, if else if, Nested if, switch case, break statement, fall through condition in switch case, Menu driven
programs, System.exit(0) - to terminate the program.

8. Iterative constructs in Java

Definition, Types of looping statements, entry controlled loops [for, while], exit controlled loop [do while] ,
variations in looping statements, and Jump statements.

Syntax of entry and exit controlled loops, break and continue, Simple programs illustrating all three loops, inter
conversion from for — while — do while, finite and infinite, delay, multiple counter variables (initializations and
updations). Demonstrate break and continue statements with the help of loops.

Loops are fundamental to computation and their need should be shown by examples.

9. Nested for loops

Introduce nested loops through some simple examples. Demonstrate break and continue statements with the
help of nested loops.

Programs based on nested loops [rectangular, triangular [right angled triangle only] patterns], series involving
single variable. (Nested while and nested do while are not included.)

10.Computing and Ethics

Ethical Issues in Computing.

Intellectual property rights; protection of individual’s right to privacy; data protection on the internet; protection
against Spam; software piracy, cybercrime, hacking, protection against malicious intent and malicious code. The
stress should be on good etiquette and ethical practices.

INTERNAL ASSESSMENT - 100 Marks

This segment of the syllabus is totally practical oriented. The accent is on acquiring basic programming skills
quickly and efficiently.

Programming Assignments (Class IX)

Students are expected to do a minimum of 20 assignments during the whole year to reinforce the concepts
studied in the class.

Suggested list of Assignments:

The laboratory assignments will form the bulk of the course. Good assignments should have problems which
require design, implementation and testing. They should also embody one or more concepts that have been
discussed in the theory class. A significant proportion of the time has to be spent in the laboratory. Computing
can only be learnt by doing.

The teacher-in-charge should maintain a record of all the assignments done as a part of practical work throughout
the year and give it due credit at the time of cumulative evaluation at the end of the year.
Some sample problems are given below as examples. The problems are of varying levels of difficulty:
(i) Programs using Assignment statements.
Example: Calculation of Area / Volume / Conversion of temperature / Swapping of values etc.
(ii) Programs based on- Input through parameters.
Example: Implementation of standard formula etc.
(iii) Programs based on - Input through Scanner class.
Example: Implementation of standard formula etc.
(iv) Programs based on Mathematical methods.
Example: larger/smaller of two numbers, cube root, square root, absolute value, power, etc.

(v) Programs based on if, if else, if else if ladder, nested if etc.
(a) if programs
Larger / smaller of two numbers To check divisibility of a number, etc.

(b) if - else programs

Odd or even number Eligibility to vote
Upper case or lower case Positive or negative number
Vowel or Consonant Buzz number etc.

(c) if-else-if programs
Programs based on discount/interest/ bonus/ taxes/ commission.
Programs based on slab system.
Programs based on Nested if.
(vi) Programs on switch case.
(a) Day of a week (b) Name of the month
(c) Names of the seasons (d) Calculator
(e) Vowel or consonant etc.
(vii) Programs based on Looping Statement
(a) Programs based on for looping statement.
(b) Programs based on printing simple series, summation of simple series, product of simple series.

(c) Prime number, perfect number, composite number, Fibonacci series. Lowest Common Multiple
(LCM), Highest Common Factor (HCF) etc.

(d) To find the biggest and smallest number from n number of entered numbers.

(e) Program based on while loop like Armstrong number, Spy number, Niven number, Palindrome
number, etc.

(viii) Programs based on nested loops [rectangular, triangular(right angled triangle only) patterns], series in-
volving single variable.

(ix) Generate first n multiples of numbers from 1 to the limit input by the user.
(x) Menu Driven programs.

Important: This list is indicative only. Teachers and students should use their imagination to create innovative and
original assignments.

EVALUATION

Proposed Guidelines for Marking

The teacher should use the criteria below to judge the internal work done. Basically, four criteria are being
suggested: class design, coding and documentation, variable description and execution or output. The actual
grading will be done by the teacher based on his/her judgment. However, one possible way: divide the outcome
for each criterion into one of 4 groups: excellent, good, fair/acceptable, poor/unacceptable, then use numeric
values for each grade and add to get the total.

Class design:
Has a suitable class (or classes) been used?
Are all attributes with the right kinds of types present?
Is encapsulation properly done?
Is the interface properly designed?

Coding and Documentation:

Is the coding done properly? (choice of names, no unconditional jumps, proper organization of conditions, proper
choice of loops, error handling code layout). Is the documentation complete and readable? (class documentation, vari-
able documentation, method documentation, constraints, known bugs - if any).

Variable and Description

Format for variable description:

Name of the variable Data Type Purpose/Description

Evaluation of practical work (Assignments) will be done as follows:

Subject Teacher (Internal Examiner): 100 Marks

Class design Class design | Variable description Coding and Execution OR Output
(100 marks) (20 marks) (20 marks) Documentation (20 marks) (40 marks)

Excellent
Good

Fair

Poor

Aligned with NEP 2020 and NCF 2023

FEATURES OF NEP 2020

Creativity v Media Literacy

21st Century Skills

. Learning
—) Skills (4Cs)

Life Skills
(FLIPS)

Critical Thinking v Information Literacy v Flexibility

I/

N

v Leadership &

Communication v Technology Literacy Responsibili

v
v
v
\‘ v Collaboration
\

\

v Initiative
v Productivity

ty

&

Social Interaction

/ Accountability
)

The Six Pramanas

BASED ON NCF 2023 II

In NCF 2023, curriculum means not only what Inference Perception
is given in the books, but also how the learners
learn in school, the school's environment, and Verbal Testimony

more. To make learning better, we need positive
changesin all these areas.

Postulation

Comparison

Non- Apprehension

How to Access Digital Content through QR Code

For Website Users

“Visit “digital.inventanteducation.com”

Click “Register” button available on the top-right.

Select ‘Teacher/Student’ in ‘User’ Type.

Enter your name, email, mobile number and password.

Click ‘Register’, and Enter the OTP to verify your mobile/email.

LN X X XX

view the required content.

For Mobile Users

v" Go to Google Play Store or Apple App Store.
v Type 'Edu Invent' in the search bar.

v Tap ‘Install. The app will take a few moments to download and
install.

Once installed, tap ‘Open’ to launch the app.
Register yourself and login on the app.
On the dashboard, click Scan QR Code button.

Scan a QR Code printed in the book to explore the learning
content associated with the QR Code.

Once registered, login on to the website and go to Scan and
Learn section. Enter the Codes printed below the QR Codes to

Scan this QR code to
download the app

ko A i e L
|

. Introduction to Object Oriented Programming concepts
« Introduction

« Procedure-Oriented Programming
+ Object-Oriented Programming
« Difference Between Oop And Pop

« Elementary Concept Of Objects And
Classes

« Software Objects Vs Real World Objects
« Introduction to Java
« Translators

« Introduction
« Common Method to Input Dates Values

« Compiling and Running Java Programs
With Bluej

« Compiling(Translating) Your Java
Program With Bluej

Defference Between Complier and
Interpreters

Type of Java Program
Basic Term in Java

Java APl (Java Application Programming
Interface)

Features of Java
Importance of Java

. Elementary Concept of ObjectsandClass..........ccoiiiiiiiiiiinnenennnnns 32
« Introduction » Properties of Class and Object
+ Class « Difference Between Class and Object
+ Need of aClass in Java « Relation Between Class and Objects
« Rules for Naming a Class + Message Passing Between Objects
+ Objects
. Valuesanddatatypes.....ccoiiiiiiiiiiiiiiiiiiii it iiiitiitettenaneannns 46
« Character Set + Token
« Escape sequence « Type conversion
. 0peratorsinJava.coeiiiiiiiii it i e ittt e e e e 69
« Introduction « QOutput Statements in Java
« Expression + Operator Precedence
« Hierarchy of Arithmetic Operators
B 0 o 10 T2 TR0 - - TSRt 98

Java Scanner Class
Errorsin Java
Commentsin Java

10.

Mathematical Library Methods
Java Math Class
Basic Mathematical Methods

Conditional Constructs in Java

. Iterative constructs in Java

Nested loop in Java

Arithmetic Expressions

Introduction

Flow Control Statements
If-Else vs. Switch statements
Jump

Introduction
Loop

For Loopsin Java
While Loop

« Nested Loop

Computing and ethics

=

=

|

Introduction
Ethical Issues

Protection of Individual’s Right to
Privacy

Data Protection on the Internet
Intellectual Property Rights
Spam

Practical Exercise
Project
"

iva Questions

.................................... 129
Operation Precedence
Arithmetic Shortcuts
.................................... 149
Using Break to Exit a Loop
Continue
Menu-Driven Program in Java
System.exit() In Java
.................................... 191
Do While Loop in Java
Difference Between for Loop, While
Loop, and Do-While Loop in Java
................................... 235
................................... 267
Software Piracy
Cybercrime
Hacking
Malicious Intent
Malicious Code
Good Etiquette Practice
Good Ethical Practices
283
291
293

Introduction to Object
Oriented Programming
concepts

Learning Objectives @
After studying this chapter, you will be able to:

O Understand the fundamental principles of Procedure-Oriented programming, including the structure and flow of data and
procedures

Analyze the advantages and limitations of Procedure-Oriented programming in software development

Define the concept of Object-Oriented Programming and its significance in modern software development

Identify real-world objects and their interactions to understand how they relate to OOP concepts

Explain the four core principles of OOP: encapsulation, inheritance, polymorphism, and abstraction

Difference Between Procedure-Oriented and Object-Oriented Programming

Compare and contrast the key characteristics of Procedure-Oriented programming and Object-Oriented programming
Describe Java as a versatile, platform-independent programming language and its role in software development
Distinguish between Java applets and applications, understanding their use cases and execution environments
lustrate the role of the Java Virtual Machine (JVM) in executing Java bytecode across different platforms

Explain the significance of Java source code, bytecode, and object code in the programming lifecycle

Analyze the differences between these forms of code and their impact on performance and portability

OO0 00000000 Oo

INTRODUCTION
Every programming language follows a certain approach to design the /7
software. For a software to be implemented successfully, it is vital to efinition

make it as real as possible. Real life problems are very complex and
it is important to convert these requirements into a model which
can be developed using a programming language. You have many
programming approaches like Object-oriented, Procedure-Oriented,
functional programming and many more.

A program is a set of instructions
given to a computer to perform a
specific task.

PROCEDURE-ORIENTED PROGRAMMING

A program in a procedural language is a list of instructions where each statement tells the computer to do
something. It focuses on procedure (function) & algorithm is needed to perform the derived computation.

When program become larger, it is divided into function & each function has clearly defined purpose.
Dividing the program into functions & module is one of the cornerstones of structured programming.

©

Example of POP are C, VB, FORTRAN, Pascal, etc.

ICSE Computer Application-IX

© cxrramiic

Programming paradigm is an approach to solve a given problem by writing a set an instruction in a programming
language. It refers to the organizing principles of a program.

Characteristics of Procedure-Oriented Programming
The characteristics of Procedure-Oriented Programming are:
1. It focuses on process rather than data.

2. It takes a problem as a sequence of things to be done such as reading, calculating and printing. Hence,
a number of functions are written to solve a problem.

3. A program is divided into a number of functions and each function has clearly defined purpose.
4. Most of the functions share global data.

5. Data moves openly around the system from function to function.

Limitations of Procedure-Oriented Programming
The Limitations of Procedure-Oriented Programming are:

1. Its emphasis on doing things. Data is given a second-class status even through data is the reason for
the existence of the program.

2. Since every function has complete access to the global variables, the new programmer can corrupt the
data accidentally by creating function. Similarly, if new data is to be added, all the function needed
to be modified to access the data.

3. It is often difficult to design because the components function and data structure do not model the
real world.

4. It is difficult to create new data types. The ability to create the new data type of its own is called
extensibility. Structured programming languages are not extensible.

To overcome these limitations, Object-Oriented programming was introduced.

OBJECT-ORIENTED PROGRAMMING

Object-Oriented Programming (OOP) is a programming paradigm centered around the concept of “objects,”
which are instances of classes that encapsulate data and behaviour. At its core, OOP emphasizes the
organization of code into reusable, modular components that model real-world entities.

The examples of OOPs are Python, Java, Basic programming and C++, etc.

The key concepts of OOP are: (

1. Abstraction: Abstraction involves simplifying complex
systems by focusing on the essential characteristics while | Abstraction means to represent the essential
hiding unnecessary details. In OOP, abstraction is achieved | feature without detailing the background
through the use of abstract classes and interfaces. Abstract | implementation or internal working detail.
classes provide a blueprint for other classes but cannot be

ICSE Computer Application-IX

o

instantiated themselves, while interfaces define a contract for classes to implement certain methods
without specifying the implementation details.

It is also known as data hiding within a program.

Example: An ATM abstracts the banking process. Users interact with the ATM interface to perform
tasks like withdrawing cash, checking account balances, or transferring funds without needing to
understand the inner workings of banking systems.

2. Encapsulation: Encapsulation is the bundling of data and methods that operate on that data within
a single unit, typically a class. It allows for the hiding of implementation details from the outside
world and enables better control over access to the data. This helps in creating more modular and
maintainable code.

Example: Consider a car. The engine of the car encapsulates various internal components such as
pistons, crankshafts, and camshafts. These components are hidden from the outside and interact with
the external world only through well-defined interfaces like the accelerator pedal or ignition key.

Another example is a simple Soft Drink Vending machine. It serves you the drinks whenever you
request. In this case, you do not know the background of how it serves you the drink when you press
a button. This is Abstraction. It contains both data (soft drinks) and functions (serving drinks). This
is called Encapsulation.

3. Inheritance: Inheritance is a mechanism by which a class can inherit properties and behaviour
from another class, known as the superclass or base class. The class inheriting from the superclass is
called a subclass or derived class. Inheritance promotes code reusability and allows for the creation
of hierarchical relationships between classes. For example, a “Vehicle” class may be a superclass, with
subclasses like “Car” and “Truck” inheriting from it.

Example: Think about vehicles. You have a hierarchy of vehicles such as cars, trucks, and motorcycles.
Each type of vehicle inherits common characteristics from a superclass “Vehicle,” such as having wheels,
an engine, and the ability to move. However, each subclass may also have its own unique attributes
and behaviours. For instance, a truck might inherit from the Vehicle class but also have additional
features like a larger cargo capacity.

Consider a scenario where we have a superclass called Vehicle, which represents common characteristics of
vehicles. You also have two subclasses: Car and Motorcycle, which inherit from the Vehicle class.

In this diagram:

Activity
Vehicle Vehicle is the superclass, which contains *
general attributes and behaviours shared by = Try to think more example of
/ \ all vehicles. Polymorphism in your daily life.
/ \ Car and Motorcycle are subclasses of Vehicle, which inherit attributes and
Car Motorcycle behaviours from the superclass while also having their own unique attributes

and behaviours.

4. Polymorphism: Polymorphism comes from the Greek words poly and morphism. poly means many
and morphism means form. Polymorphism allows objects of different classes to be treated as objects
of a common superclass. It enables the same method to behave differently based on the object it is
called on. Polymorphism can be achieved through method overriding (where a subclass provides a

ICSE Computer Application-IX @

specific implementation of a method inherited from its superclass) and method overloading (where
multiple methods with the same name but different parameters exist in the same class or hierarchy).

Example: In the animal kingdom, various species exhibit different behaviours, such as eating, sleeping,
and moving.

Polymorphic Behaviour: Despite the diversity of species, many animals share common behaviours. For
instance, carnivores, herbivores, and omnivores all eat, but they consume different types of food. Similarly,
animals like birds, mammals, and fish all move, but they use different locomotion methods (e.g., flying,
walking, swimming). By defining a common superclass (Animal) with methods like eat() and move(),
and allowing subclasses to override these methods with species-specific behaviour, the animal kingdom
demonstrates polymorphic behaviour.

By utilizing these principles, OOP enables the development of modular, maintainable, and scalable software
systems, making it a widely used and essential paradigm in modern software development.

‘ . Fact Time

There are two main types of polymorphism: Compile-time

polymorphism and Run-time polymorphism. LRI O 1

Characteristics of Object-Oriented Programming

The characteristics of Object-Oriented programming are:

1. OOP follows a bottom-up approach. &m P

2. The program resulting from Object-

Oriented programming is a collection of * The superclass is the class from which properties

objects. Each object has its own data and a and behaviours are inherited.

set of operations. * The subclass is the class that inherits properties
3. OOP restricts the free movement of data and behaviours from the superclass.

and the functions that operate on it. It uses
a data/information hiding technique that allows better control over data.

4. A properly defined class can be reused, giving way to code reusability.
5. The concept of Object-Oriented programming models real-world entities very well.

6. Due to its Object-Oriented approach, it is extremely useful in solving complex problems.

Limitation of Object-Oriented Programming
The limitation of Object-Oriented programming are:

1. The size of the programs created using this approach may become larger than the programs written
using Procedure-Oriented programming approach.

2. Software developed using this approach requires a substantial amount of pre-work and planning.
3. OOP code is difficult to understand if you do not have the corresponding class documentation

4. In certain scenarios, these programs can consume a large amount of memory.

ICSE Computer Application-IX

o

DIFFERENCE BETWEEN OOP AND POP

sNo| ________oop | POP_

1.

OOP takes a bottom-up approach in designing
a program.

Program is divided into objects depending on
the problem.
Each object controls its own data.

Focuses on security of the data irrespective of
the algorithm.

The main priority is data rather than functions
in a program.

The functions of the objects are linked via
message passing.

Data hiding is possible in OOP.

Inheritance is allowed in OOP.

© cxrramie

POP follows a top-down approach.

Program is divided into small chunks based on
the functions.

Each function contains different data.

Follows a systematic approach to solve the
problem.

Functions are more important than data in a
program.

Different parts of a program are interconnected
via parameter passing.

No easy way for data hiding.

No such concept of inheritance in POP

In short, Procedure-Oriented Programming focuses on procedures or functions that operate on data, while
Object-Oriented Programming emphasizes the organization of code around objects that encapsulate data and
behaviour. OOP provides features like encapsulation, inheritance, and polymorphism, which promote code reuse,
modularity, and maintainability.

ELEMENTARY CONCEPT OF OBJECTS AND CLASSES

The main objective of Object-Oriented programming is to simulate the product as close as possible to the
real world. How does it achieve that? Well, the answer is class and objects. These act as the fundamental
blocks of Object-Oriented programming. Let’s learn about them a little more.

1. Class: A class or object is a way of combining all sorts of data that relates to a single thing in one

b. It is a logical entity. It can’t be physical.

place, and a way of associating functions with that data. (For most intents and purposes, classes and
objects are the same thing)

a. It is a template or blueprint from which objects are created.

For example, you can consider human as a class. A car can be a class.

So, let’s say God made a class knows as Humans. Now, when he created you, you became a part of that class.
Similarly, your friends and family are also a part of that class. Everything in the real world is categorised
into some main category. This main category is usually what you call classes in programming.

A car is a common real-world object that can be
modeled using a class in Java.

ICSE Computer Application-IX

o

a. Car (Class) The “Car” class serves as a blueprint for creating car objects.
It encapsulates both data (attributes) and behaviour (methods) of cars.

b. Attributes (Fields) make, model, year, color, mileage: These are attributes
of the “Car” class that represent the state or characteristics of a car
object. Each car object will have its own values for these attributes.

c. Behaviours (Methods) start(), stop(), accelerate(), brake(): These are
methods of the “Car” class that represent actions or behaviours that
a car object can perform. Methods encapsulate the behaviour of a car,
such as starting the engine, stopping the car, accelerating, and braking.

2. Objects An entity that is a part of a class is known as an object. An object
has some behaviour and state. For example, you are a part of class Human.
That makes you an object of Human class.

An object is what physically fills up the class. A class is just a blueprint but an
object is an actual implementation of that blueprint. For example, God created

a blueprint “Humans” which said that a human should have two legs, two arms, - start ()
two ears, one mouth and the ability to talk. This is class Human. But when - stop ()
he created you, you were the actual implementation or result of his design of - accelerate ()

Humans. So, you are an object of class Human. Similarly, your friends and family
are also objects of class Human.

=Y Know More JIS

*The term object means a combination of data and logic that represents
some real time entity.

- brake ()

Let’s take another example

A car is a road vehicle, typically with four wheels, powered by an internal combustion engine and able
to carry a small number of people. Now, this is a blueprint of a car. Thus, a car is a class. Now, Maruti,
Hyundai and Ford made their own versions of car. EcoSport, i20 and Brezza all have different designs and
features but at the end of the day, they are all categorised into cars. Thus, these different Ford and Hyundai
cars are all objects of a parent class “Car”.

© xrramic

Classes and objects provide a way to model and represent real-world entities in Java programs. They enable code reuse,
modularity, and abstraction, making it easier to manage and maintain complex systems.

SOFTWARE OBJECTS VS REAL WORLD OBJECTS

A real-world object is a physic body, on the other hand a software object is an abstraction of a data entity
used in a programming paradigm known as Object Oriented Programming.

ICSE Computer Application-IX

A software object is a logical representation of the real-world object and not the complete replica of it. For
example, an employee of an organisation. Its software object can have properties like name, address, job,
salary and so on but it cannot include every detail about that employee like how many degrees his elbow
can bend.

In simple words, a software object tries to project itself as close as possible to the real-world object. That
is how a software is created.
Characteristics of Software Object
A software object has three characteristics:
1. State: Represents data (value) of an object.
2. Behaviour: Represents the behaviour (functionality) of an object such as deposit, withdraw etc.

3. Identity: Object identity is typically implemented via a unique ID. The value of the ID is not visible
to the external user. But it is used internally by the JVM to identify each object uniquely.

For example, your name, skin color, age, height, weight are the features that define you and define your
state. The tasks you perform like talking, walking, working is your behaviour. You have a unique ID number
that identifies you uniquely all over the country.

This was a general example of how to use concepts of Object-Oriented programming for real world problems.

INTRODUCTION TO JAVA

Java programming language was originally developed by Sun Microsystems which was initiated by James
Gosling and released in 1995 as core component of Sun Microsystems’ Java platform (Java 1.0 [J2SE]).

History of Java

The history of Java is an interesting journey that begins in the early 1990s. Here’s a brief overview:

1. Origins at Sun Microsystems: Java was developed by James Gosling, Mike Sheridan, and Patrick
Naughton at Sun Microsystems (later acquired by Oracle Corporation) in the early 1990s.

The project was initially named “Oak” after an oak tree outside Gosling’s office. It was later renamed
“JTava” due to trademark issues.

2. Public Release (1995): Java 1.0, the first official version of Java, was released to the public by Sun
Microsystems in 1995.

It included the Java Development Kit (JDK) and the Java Runtime Environment (JRE).
3. Key Features: Java was designed with the goal of being platform-independent, secure, and robust.

It introduced features such as automatic memory management (garbage collection), exception handling,
and a rich set of standard libraries.

4. “Write Once, Run Anywhere”: One of Java’s most significant contributions to software development
is its platform independence.

Java programs are compiled into bytecode, which can run on any device with a Java Virtual Machine
(JVM), regardless of the underlying hardware or operating system. This principle is often summarized
as “Write Once, Run Anywhere” (WORA).

ICSE Computer Application-IX

©

5. Popularity and Adoption: Java quickly gained popularity due to its simplicity, portability, and suitability
for building a wide range of applications, from desktop to web and enterprise systems.

It became the language of choice for many developers and organizations, leading to widespread adoption
in various industries.

6. Evolution and Versions: Over the years, Java has continued to evolve with regular releases and updates
introducing new features, enhancements, and improvements.

Major releases include Java 2 (renamed as Java SE), Java EE (Enterprise Edition) for enterprise
applications, and Java ME (Micro Edition) for mobile and embedded devices.

Recent versions include Java 8, which introduced lambda expressions and the Stream API, and Java 11,
which marked the transition to a faster release cadence with a new long-term support (LTS) model.

7. Open Sourcing: In 2006, Sun Microsystems open-sourced the Java platform under the GNU General
Public License (GPL) through the Open]JDK (Java Development Kit).

This move further contributed to Java’s widespread adoption and allowed the community to contribute
to its development.

8. Acquisition by Oracle: In 2010, Oracle Corporation acquired Sun Microsystems, becoming the steward
of the Java platform.

Oracle continues to develop and maintain Java, overseeing its evolution and providing updates and
support to the community.

Throughout its history, Java has remained a versatile and

powerful programming language, playing a significant role . Fact Time

in shaping the modern software development landscape.

It continues to be used extensively in a wide range of | Java was originally known as OAK.
applications, from enterprise systems and web services

to mobile apps and cloud computing.

TRANSLATORS

The computer language that is the machine code is almost impossible to be understood by the humans.
So, humans write their programs in high level languages and then this is converted to low level language
so that the computer can understand it. So, who does this conversion? Here comes the Translators.

Translators are software’s which are used to convert high level languages to low level languages. There are
two types of translators:

1. Interpreters: An interpreter reads and execute code line by line. In Java, the interpreter is part of JVM.

2. Compilers: A compiler is a Program that translates Java Source code into independent, intermediate
representation of the code.

=Y know More I8

* The Java development kit comes with a collection of tools
that are used for developing and running Java programs.

ICSE Computer Application-IX

©

DEFFERENCE BETWEEN COMPLIER AND INTERPRETERS

1. Purpose
73 Output
3. Example
4. Efficiency
Platform
Independence

Converts entire source code into
machine code or intermediate
code before execution.

Produces an output containing
machine code or byte code.

Jawa uses a compiler to convert
source code into byte code.

Generally produces faster
execution as the entire code is
optimized before execution.

Compiled code is usually plarform
specific unless compiled into ab
intermediate code.

Translate and execute the source code line by
line.

Does not produce a seperate output file.

Python user an interpreter to execute the
code line by line.

Slower execution since the code is translated
on the fly during execution.

Interprered code is platform independent but
sequences the presence inter preter on the
targer machine.

=Y know More I

* In Java compilation, first, the compiler converts the source code to an intermediate language (Java
Byte Code), which is further converted to machine code by the interpreter (Java Virtual Machine).

TYPE OF JAVA PROGRAM

There are two type of Java programs:

1. Applications: Java programs that run directly on your machine.

a. Applications must have a main().

b. Java applications are compiled using the javac command and run using the Java command.

© xrramie

The term Java application generally refers to an application that is designed for stand-alone use. A frequently used
slang term for application is app.

2. Applets: Java programs that can run over the Internet. The standard client/server model is used
when the Applet is executed. The server stores the Java Applet, which is sent to the client machine
running the browser, where the Applet is then run.

a. Applets do not require a main(), but in general will have a paint().

b. An Applet also requires an HTML file before it can be executed.

ICSE Computer Application-IX

©

c. Java Applets are also compiled using the javac command, but are are run either with a browser or
with the appletviewer command.

BASIC TERM IN JAVA

Before understanding the Java compilation program, let us first understand some of the basic terms used
in Java.

1. Source code: These are the original instructions written by a programmer in Java language following
the rules of Java.

a. Java source code refers to the human-readable text written by developers to create Java programs.
b. Source code files typically have a .java extension.

c. Java source code contains classes, methods, variables, and other elements of the Java programming
language.

2. Bytecode: Bytecode is program code that has been compiled from source code into low-level code
designed for a software interpreter. It may be executed by a Java Virtual Machine (such as a JVM) or
further compiled into machine code, which is recognized by the processor.

a. Bytecode is an intermediate representation of Java programs generated by the Java compiler (javac)
during the compilation process.

b. It is a set of instructions for the Java Virtual Machine (JVM) to execute.

c. Bytecode is platform-independent and can be executed on any device or operating system with a
compatible JVM implementation.

d. Bytecode files have a class extension and are stored in compiled form.

3. Object code: Object code is code generated by a compiler or other translator, consisting of machine
code, byte code, or possibly both, combined with additional metadata that will enable a linker, loader,
or linker-loader to assemble it with other object code modules into executable machine code or byte
code.

a. In the context of Java, object code is often associated with native code generated by a Just-In-Time
(JIT) compiler or Ahead-Of-Time (AOT) compiler.

b. Object code refers to the machine-readable binary code generated by a compiler or an assembler
from source code.

c. Unlike bytecode, which is executed by the JVM, object code is executed directly by the underlying
hardware.

d. Object code is specific to the target platform and cannot be executed on different platforms without
modification.

4. JVM: The Java Virtual Machine (JVM) is an abstract computing machine that enables Java bytecode
to be executed on any device or Operating System.

It acts as an interpreter for Java bytecode, translating it into machine-specific instructions that can be
executed by the underlying hardware.

ICSE Computer Application-IX

o

The JVM provides features like memory management, garbage collection, and security to Java programs.

It ensures that Java programs run efficiently and securely on a wide range of platforms.

What does JVM performs?

It is used to load the code. It Verifies and executes the

Java Code (.java)

code. And it provides run time environment. v
The featuers of JVM are as follows: JAVAC
compiler

1. Platform Independence: One of the main features of l
the JVM is its platform independence. Java programs

. . . . Byte Code (.class)

are compiled into bytecode, which is a platform-
neutral intermediate representation of the program. I l 1
The JVM then interprets this bytecode and executes
. . . JVM JVM JVM
it on any device or operating system that has a JVM
implementation. ¢ ¢ ¢

. . . Windows Linux Mac

2. Execution Environment: The JVM provides an
execution environment for Java programs, including JVM Compiler
memory management, garbage collection, and security
features. It ensures that Java programs run efficiently and securely on a wide range of platforms.

3. Just-In-Time(JIT) Compilation: In addition to interpreting bytecode, many modern JVM
implementations also use a technique called Just-In-Time (JIT) compilation. This involves compiling
bytecode into native machine code at runtime, which can improve performance by executing optimized
native code instead of interpreting bytecode.

4. Class Loading and Runtime Management: _:

EXTRA TIME
The JVM is responsible for loading classes into ;;;;;;;;:;;:;;;;;:; o
memory as they are needed by the program. It The process of converting the source code into
also manages memory allocation and deallocation, ~ machine code is called compilation. The compilation
including garbage collection to reclaim memory Produces the machine code. For different platforms
occupied by objects that are no longer in use. different machine codes are produce.

5. Security: The JVM includes built-in security

features to protect against malicious code. It enforces access control policies, verifies bytecode to
ensure it does not violate security constraints, and provides a secure execution environment for Java
programs.

JAVA API (JAVA APPLICATION PROGRAMMING INTERFACE)

Java API is a library of compiled code (small built-in programs) that can be used in our program in order
to lessen our program effort.

Java Platform

The Java Compiler, JVM combined with Java APIs makes Java platform. JDK (Java Development Kit). It
contains Java compiler, Java Virtual Machine (JVM), Java API (libraries) etc.

ICSE Computer Application-IX

©

Java Compilation
Ordinary Compilation Process

The compiler for Windows converts the source program directly to machine code for Windows only. The
compiler for System?7.5 compiles to machine code only for System7.5. The compiler for a particular system
software can convert only for that system software.

Machine Code
for Windows

Compiler of
Window

Source Code
for Windows

Machine Code
for System7.5

Source Code
for System7.5

Compiler of
System?7.5

Ordinary Compilation Process
Java Compilation Process

Java Compiler compiles the source code to Java Byte Code, then this byte code is interpreted by Java
Interpreter into Machine Code for a specific platform i.e., if the operating system is Windows then to the
machine code for Windows, if the operating system is System7.5 then to the machine code for System?7.5

Diagrammatic Representation of Java Compilation Process

Machine Code

Java Java Java for Window
&N Ey-
for System?7.5

Java Compilation Process

FEATURES OF JAVA

The feature of Java are as follow:

1. Object Oriented: In Java, everything is an Object. Java can be easily extended since it is based on the
Object model.

2. Platform Independent: Unlike many other programming languages including C and C++, when Java
is compiled, it is not compiled into platform specific machine, rather into platform independent byte
code. This byte code is distributed over the web and interpreted by the Java Virtual Machine (JVM)
on whichever platform it is being run on.

3. Simple: Java is designed to be easy to learn. If you understand the basic concept of OOP Java, it would
be easy to master.

4. Secure: With Java’s secure feature it enables to develop virus-free, tamper-free systems. Authentication
techniques are based on public-key encryption.

5. Portable: Being architecture-neutral and having no implementation dependent aspects of the
specification makes Java portable.

6. Robust: Java makes an effort to eliminate error prone situations by emphasizing mainly on compile
time error checking and runtime checking.

ICSE Computer Application-IX

o

7. Multithreaded: With Java’s multithreaded feature it is possible to write programs that can perform many
tasks simultaneously. This design feature allows the developers to construct interactive applications that
can run smoothly.

8. Interpreted: Java byte code is translated on the fly to native machine instructions and is not stored
anywhere. The development process is more rapid and analytical since the linking is an incremental
and light-weight process.

9. High Performance: With the use of Just-In-Time compilers, Java enables high performance.

=Y know More |8

*The class which other classes are derived through the process of inheritance is called base class or superclass.
*The class that inherits properties from a base class is called a derived class.

IMPORTANCE OF JAVA

1. Java is Platform Independent: The program written in Java can be run on any platform that means
it can be executed by any operating system and any processors; because the source code is compiled
by Java Compiler to byte code which is suited to any platform and then interpreted by JVM to native
executable code. So, Java is platform independent.

2. Java is a Programming Language as well as a Platform: &m <

Java can be used to develop various application programs like

MS Word, PowerPoint, Excel etc. So, Java is a programming * Java is owned by Oracle, and
language. Java includes some programs like compiler, more than 3 billion devices
interpreter-generally which are parts of a system software. run Java.

So, Java is a platform also.

KEY TERMS

> Class: In Java, a class is a blueprint or template for creating objects.
> Objects: Objects are instances of classes.

> Polymorphism: Polymorphism is a concept in Object-Oriented programming that allows Objects of different
types to be treated as objects of a common superclass.

> Encapsulation: Encapsulation is the bundling of data (attributes) and methods (behaviours) that operate on
that data into a single unit, typically a class.

> JVM (Java Virtual Machine): JVM is an abstract computing machine that enables Java bytecode to be executed
on any device or operating system.

ICSE Computer Application-IX

©

Summary ¢

< Object oriented programming is an approach which uses data more than functions. This data is called object.

« Procedure-Oriented programming put more emphasis on functions rather than data.

« There are 4 principles of Object-Oriented programming.

<« Abstraction refers to the practice of showing only the relevant details and hiding the unimportant details.

« Encapsulation means binding the data and functions together in one solution.

<« Inheritance is one of the most important characteristics of Object-Oriented languages where one module borrows
the features of some other module and hence helps is reusing the same module at multiple places.

<« Polymorphism is derived from two words- poly and morph. Poly means many and morph means forms. It refers
to the concept of one thing doing multiple tasks.

< Java is an Object-Oriented language developed by Sun Microsystems.

« Source code is the original instructions generated by human programmer.

<« Bytecode is program code that has been compiled from source code into low-level code designed for a software
interpreter.

« Object code is the code output of compiler.

< A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as
programs written in other languages and compiled to Java bytecode.

Exercises - 1 (Solved)

A. Multiple choice questions. [Understanding]

1. In OOP, what is the process of bundling data and methods that operate on the data into a single
unit known as?
a. Polymorphism b. Inheritance c. Encapsulation d. Abstraction

2. Which OOP principle allows objects of different classes to be treated as objects of a common
superclass?
a. Inheritance b. Encapsulation c. Polymorphism d. Abstraction

3. What is the term for the ability of a method to have multiple forms of implementation?
a. Inheritance b. Encapsulation c. Polymorphism d. Abstraction

4. Name the programming technique that specifies a series of well-structured steps and procedures
within its programming context to compose a program.
a. Procedure-Oriented Programming b. Modular Programming

c. Object-Oriented Programming d. None of these
5. Which OOP principle focuses on hiding the internal implementation details of a class from the

outside world?
a. Inheritance b. Encapsulation c. Polymorphism d. Abstraction

6. Which OOP principle promotes code reuse by allowing a class to inherit attributes and methods
from another class?
a. Inheritance b. Encapsulation c. Polymorphism d. Abstraction

ICSE Computer Application-IX

o

10.

Name the programming technique that implements programs as an organized collection of interactive
objects.
a. Procedure-Oriented Programming b. Modular Programming

c. Object-Oriented Programming d. None of these
What is the primary benefit of using OOP concepts in software development?
a. Faster execution speed b. Easier debugging

c. Better code organization and reusability =~ d. Lower memory usage

Assertion: Inheritance promotes code reusability in Object-Oriented programming.

Reason: Subclasses inherit attributes and behaviours from their superclass.
a. Both Assertion and Reason are true, and Reason is the correct explanation of Assertion

b. Both Assertion and Reason are true, but Reason is NOT the correct explanation of Assertion
c. Assertion is true, but Reason is false

d. Assertion is false, but Reason is true

Assertion: Encapsulation enhances security and reduces coupling between components.

Reason: It allows restricting access to certain components of an object.
a. Both Assertion and Reason are true, and Reason is the correct explanation of Assertion

b. Both Assertion and Reason are true, but Reason is NOT the correct explanation of Assertion
c. Assertion is true, but Reason is false
d

. Assertion is false, but Reason is true

ANSWERS
2. a. 3. c. 4. a. 5. b. 6. a. 7. C. 8. c. 9. a. 10. a.

B. Fill in the blanks.

[a—

@R W

Java is a language.

developed Java programming language.

Java compiler converts Java source code into an intermediate binary code called
The full form of JVM is

translates the source program into target program one line at a time.

1. Case-Sensitive 2. James Gosling 3. Bytecode 4. Java Virtual Machine 5. Interpreter

ANSWERS

C. State whether the following statements are True or False.

1.

A

Java is a procedural programming.

Wrapping of data and functions together as a single unit is known as encapsulation.
Polymorphism comes from the Latin words.

Class is the process by which one object can acquire the properties of another.

Alan Kay invented OOP.

ANSWERS
False 2. True 3. False 4. False 5. True

ICSE Computer Application-IX

o

D. Very short answer type questions. [Understanding]
1. Expand the following terms:
a. JDK b. JVM c. IDE.
Ans. a. JDK: Java Development Kit
b. JVM: Java Virtual Machine
c. IDE: Integrated Development Environment
2. What was the earlier name of Java?
Ans. The earlier name of Java was Oak.
3. Who developed Java?
Ans. Java was developed by James Gosling.
4. Define source code.
Ans. Source code is a set of instructions and statements written by a programmer using a computer
programming language.
5. Define objects. Also, give a real-life example.

Ans. An object is a unique entity, which has some characteristics and behaviours. For example, a student
can be considered as an object because he/she has few characteristics like name, class, age, etc.
6. Why is Java referred to as platform-independent?

Ans. Java is referred to as platform-independent because the Java compiled code (byte code) can run on
all operating systems.

E. Short answer type questions. [Recall]
1. How is Java platform independent?

Ans: Java achieves platform independence by compiling source code into bytecode, which can run on any
system with a Java Virtual Machine (JVM). The JVM interprets bytecode into machine code specific
to the underlying hardware and operating system. Java’s standard libraries abstract away platform-
specific details, ensuring consistency across different environments. This allows Java programs to be
developed and executed seamlessly across various platforms without modification.

2. What is inheritance and how it is useful in Java? Give examples.

Ans: It is process by which objects of one class acquire the properties of objects of another class. Inheritance
supports the concepts of hierarchical representation. In OOP the concepts of inheritance provides
the idea of reusability. e.g. A class car inherits some property from the class Automobiles, which in
turn inherits properties from Vehicle class. The capability to pass down properties and so allows us
to describe things efficiently.

3. What role does polymorphism play as Java feature?

Ans: It means the ability for a message or data to take more than one form. For example, an operation,
many types of data used in the operation. E.g. a child behaves like a student in school, customer in
a shopping mall, passenger in a bus and like a son/daughter at home. Same person behave differently
in various circumstances.

4. What does a class encapsulate?

Ans: A class encapsulated the data (instance variables) and methods.

ICSE Computer Application-IX

Ans:

Ans:

Ans:

Ans:

Explain the two types of Java programs.
There are two type of Java programs:
a. Applications: Java programs that run directly on the machine.

b. Applets: Java programs that can run over the Internet. The standard client/server model is used
when the Applet is executed. The server stores the Java Applet, which is sent to the client machine
running the browser, where the Applet is then run.

State the Java concept that is implemented through:

a. super class and a subclass.

b. the act of representing essential features without including background details.

a. Inheritance

b. Abstraction

Write the differences between Procedural Programming and Object-Oriented Programming.

Procedural programming aims more at procedures. The emphasis is a doing thing rather than the
data being used. In procedural Programming paradigm data are shared among all the functions
participating thereby risking data safety and security. Object Oriented Programming is based on
principles of data hiding, abstraction, inheritance and polymorphism. It implements programs using
classes and objects, In OOP"s data and procedure both given equal importance. Data and functions
are encapsulated to ensure data safety and security.

Class is termed as an object factory. Explain.

A class is known as an object factory because it contains all the statements needed to create an
object, its attributes as well as the statements to describe the operations that the object will be able
to perform.

F. Application based questions. [Analysis/Understanding]

1.
Ans:

Ans:

Ans:

Give a real-life example to explain the term encapsulation.

A capsule is a real-life example of encapsulation. Basically, a capsule encapsulates several combinations
of medicine. If combinations of medicine are variables and methods, then the capsule will act as a
class and the whole process is called encapsulation.

Explain the concept of class and objects by providing a real-life example.

A class is a group of objects that have some common characteristics and behaviours. A class is a
blueprint from which individual objects are created. In other words, a class is a concept, and the
object is the implementation of that concept. We need to have a class before creating the objects.
Let us consider a car as a class that has characteristics, like steering wheel, seats, brakes, etc., and its
behaviour is mobility. However, you can say BMW, having a registered number of 4284, is an ‘object’
that belongs to the class ‘car’

Imagine you are designing a banking application where security and scalability are crucial.
Explain how OOP principles like abstraction and interface implementation can contribute to
designing a secure and scalable system. Discuss how these principles facilitate code maintenance
and future enhancements in the banking application.

In a banking application, abstraction via OOP isolates sensitive data and operations, reducing
exposure and enhancing security. Interface implementation ensures modular, interchangeable
components, facilitating scalability and adaptability to evolving demands. These principles streamline

ICSE Computer Application-IX @

code maintenance by compartmentalizing functionality and dependencies, enabling easier updates
without widespread impact. Future enhancements benefit from this structured approach, allowing
seamless integration of new features while maintaining robust security and scalability measures.

4. Consider a scenario where you have two classes, Vehicle and Car, where Car inherits from Vehicle.
Explain how inheritance in this scenario promotes code reuse and simplifies maintenance.
Discuss the relationship between Vehicle and Car, highlighting the concept of inheritance.

Ans: Inheritance allows Car to inherit behaviours and attributes from Vehicle, such as speed and fuel
consumption, promoting code reuse by eliminating redundant code for common functionalities.
This hierarchical relationship simplifies maintenance by centralizing shared methods and properties
in Vehicle, ensuring consistent updates across all derived classes like Car.

Exercises - 2 (Unsolved)

A. Multiple choice questions. [Recall]

1. Which of the following is a Procedure-Oriented programming language?
a. Pascal b. C++ c. Java d. Python

2. Name the Object-Oriented language among the following.
a. Pascal b. Fortran c. C++ d. All of these

3. What is the most important entity in Object-Oriented programming languages?
a. Objects b. Functions c. Variables d. Expressions

4. Name the concept of showing only important details and hiding non-essential details.
a. Abstraction b. Encapsulation c. Inheritance d. Polymorphism

5. What is used to run bytecode?

a. JVM b. JPM c. JRE d. JDK
6. Name the Java programs that run directly on a machine.
a. Applets b. Applications c. Programs d. Websites
7. What are the type of Java programs that run on the Internet?
a. Applets b. Applications c. Programs d. Websites
8. Name the characteristic of Java to run on any platform.
a. Robust b. Portability c. Simple d. Multithreaded
9. What is the feature of Java to run parallel tasks at the same time called?
a. Robust b. Portability c. Simple d. Multithreaded
10. Java was originally known as:
a. OAK b. ROSE c. WALNUT d. All of these
B. Fill in the blanks. [Understanding]
1. was the first purely Object-Oriented programming language.
2. OOQP first came into picture in by Alan and his team.
3. indicates code reusability in OOPs.

4. Java is a platform

ICSE Computer Application-IX

o

The full form of JIT is

Java program comes into main types.

The concept of deriving one class from another class is called

The Java compiler translates Java source code into Java

¥ ® NG

A is a program that behaves like a computer.

10. is a high-level programming language.

C. State whether the following statements are True or False. [Understanding]
Java is a Procedure-Oriented language.

An object is a real-world entity.

Pascal is a Procedure-Oriented language.

Byte code is the original code written by a programmer.

JVM stands for Java Virtual Machine.

Object code is the output of a compiler.

Java supports multithreading.

Java is a platform dependent language.

0 ® NN »D

Sun Microsystems developed Java.

[
e

JVM is Java compiler.

Lab Work [Analysis]

1. Try to find about the location where a byte code is generated.

2. Compare and discuss the deffernce between OOP and POP.

Project Work [Application]

1. Write a program in Java to define a Student class with attributes like name, roll number, and marks
in different subjects.

2. Write a Java program that defines a class Car with properties like color, model, and speed. Then create
an object from this class.

Scan the QR code for more solved questions.

#, Teacher’s Notes

'?‘V » Help the students understand the significance of Object-Oriented programming

o Help them understand the different features of Java

ICSE Computer Application-IX

o

As per the latest syllabus
Prescribed by the CISCE

OMPUTER,

L 4
APPLICATIONS ¢

(Subject Code - 86)

S —

With BlueJ

\ Palvi Gupta \
M.Tech, B.E.

(Computer Sceince & Engineering)
D.A.V. University, Jalandhar

Inventant
@ Education

Present Meets Future

Inventant
% Education

Present Meets Future
(A Unit of EDULABZ International)

D-47, Sector 2, Noida, Uttar Pradesh-201301
Email : info@inventanteducation.com
Customer care number: 18002022912

Disclaimer

This educational material, developed by Inventant Education, focuses on STEM education. While we strive for accuracy, we do not guarantee
completeness or suitability for all purposes. Inventant Education is not liable for any damages resulting from the material’s use or any
inadvertent omissions or errors. References to products, services, or organizations are for informational purposes and do not imply endorsement.

First Edition : October, 2024
Price: 3649

Copyright
© Inventant Education, a unit of Edulabz International

All rights reserved. No part of this educational material may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Inventant Education. Permission
is granted to educational institutions for classroom use, provided that the material is used for non-commercial, educational purposes and is
not sold or distributed for profit. For any other use, please seek written permission from Inventant Education. Inventant Education and the
Inventant Education logo are registered trademarks of Inventant Education and/or its subsidiaries. All other trademarks and trade names are
the property of their respective owners.

Printed at
SRG Traders Pvt. Ltd., Noida

Preface

The Class 9th and 10th ICSE Computer Applications book is designed to introduce students to the exciting and rapidly
evolving world of computer science. It serves as a comprehensive guide that lays a solid foundation in programming and other
essential computing concepts. The book is structured to align with the ICSE (Indian Certificate of Secondary Education)
syllabus, ensuring that all relevant topics are covered systematically and in-depth, preparing students for both academic
success and practical application.

Key Features of the Book:

1.

10.

1.

12

13.

Introduction to Basic Computer Concepts: The book begins with fundamental concepts. This forms a strong
foundation for understanding advanced topics.

Object-Oriented Programming (OOP): The primary focus of the book is on Java programming, an object-
oriented language. Students are introduced to the core principles of OOP, such as classes, objects, inheritance, and
polymorphism, which are critical for modern software development. The book uses simple and clear examples to
explain these concepts, making it easier for students to grasp.

Programming Basics: Students learn the syntax of Java and are guided step-by-step through writing their first
programs. They are taught how to use variables, data types, operators, Iterative, nested and conditional statements
to build simple applications.

Problem-Solving Skills: The book emphasizes logical thinking and problem-solving through coding exercises.
It includes a variety of practical programming examples and challenges to encourage students to apply their
knowledge in real-world scenarios. This approach not only enhances their programming skills but also improves
their analytical thinking.

Java Programming: One of the standout features of the book is its introduction to Java programming, where students
learn how to create interactive applications. They are guided through the basics of designing user interfaces with
buttons, text fields, and other controls, providing them with the tools to create functional and user-friendly programs.

Exercises and Projects: At the end of each chapter, there are exercises that include both theoretical and practical
questions to test students’ understanding of the material. Additionally, project work is assigned to help students
consolidate their learning by developing larger, more complex applications. These projects often mimic real-world
problems, fostering creativity and deeper learning.

ICSE Examination Preparation: The book is structured to help students prepare effectively for the ICSE exams.
It includes model questions, Java Programming, and previous year’s exam questions, providing ample practice for
students to master the format and style of the exam.

Learning Objectives: Clearly define what students will learn by the end of each chapter.

Definition: Provide clear and concise definitions of important terms to help students understand concepts better. It
should be simple, concise, and relevant to the topic at hand.

Extra Time: Suggested activities or extensions for students who finish early or need additional challenges. It ensures
that fast learners stay engaged and deepen their knowledge.

Know More: Provide additional facts or insights to encourage deeper understanding of the topic. This section spark
curiosity and provide context or trivia related to the topic.

Lab Activity: Hands-on exercises that allow students to apply theoretical concepts in practical scenarios. It enhances
understanding by giving students the opportunity to experiment with the software.

Teacher Notes: Provide teachers with background information, teaching tips, and key points to emphasize during
the lesson. It supports educators by offering guidance on how to deliver content effectively.

Teacher’s Resource Book: Provides lesson plans and solutions to the textbook questions.
Online Support: Downloadable e-books (for teachers only)

| owe my success in this project to the unwavering support of my family. My husband’s encouragement, my son
Sidharth’s joy, my parents’ guidance, and my mother-in-law’s understanding have all been crucial in helping me
achieve this balance.

Suggestions for the improvement of the book are most welcome.
—Author

Learning Objectives @

After studying this chapter, you will be able to:

O Understand the key concepts of OOB including dasses, abjects, and the four principles of OOP (Encapsulation, Abstraction,
Inheritance, and Polymorphism)

O Differentiste between procedural and object-oriented programming approaches

O Explain what a dass and an object are in Java

O Understand the different data types in Java (primitive types like int, float, char, boolean, etc., and reference types like abjects)

Learning Objectives
Definition

Definition

4 EXTRA TIME

o xevrews

[}

1 *
1 > Class: A class is a blueprint for creating objects. It defines a data type by bundling data and methods that
1 ‘work on that data into one single unit.
1

1

1

1

1

1

1

a

v

Object: An object is an instance of a class. It is a concrete realization of a class that occupies memory and

can have attributes and methods.

» Inheritance: Inheritance is a mechanism where one class (subclass) inherits the properties and methods of
another class (superclass)

> Polymorphism: Polymorphism allows objects of different classes to be treated as objects of a common
superclass. It includes method overriding and method overloading.

> Abstraction: Abstraction is the concept of hiding the details and showing only the

to the user. It is achieved using abstract classes and interfaces.

Scan the QR code for more solved questions.

QR Codes

Lab Activity [Application]
1. Design a library management system. Find out the class and its objects.
2. Try to list the data members and methods of the identified class.

SOLVED PROGRAMMING
1. Write a program to calculate the area and perimeter of the rectangle.

Ans: public class Rectangle |
public static void main(String[] args) |

Java/Solved Programs

SampLE PROJECT ol i) h 4

1. Wrile & program in Java to calulates the botal grocery il foe o cusomer hased oo the quantity of
Bems

purchased and theis prices. .
Ehrlﬁlhhr el ']
T e
. Sample Project
& CETS - |
1
* Java allows you to represent special characters :
using escape sequences, such as \n for newline, :
\t for tab, and YWXXXX for Unicode characters, 1
where XXXX is the hexadecimal representation :
of the Unicode code point. T T T T T S S S S S S S S S S S S S S Sm s sm s L4
L e @
Activity) ‘

Exercises - 1 (Solved)

A, Multiple choice questions. [Understanding]
1. What is the main principle of OOP that involves hiding internal state and requiring all interaction

1o be performed through an object’s methods?
hesh b Polymorphi

s

¢ Encapsulati d.
2. Which OOP concept allows one class 1o inheril the properties and behaviours of another class?
a. Polymorphi b. i £ i d. Abstraction

Teacher's Notes

hm_ - stdents 10 write Java code 10 solve each exercise and rus their programs 1o see
4 ourage sudents to continue practicing boops on their own and explore more comples.
o P s

Teacher’s Notes

SYLLABUS

CLASS X

There will be one written paper of two hours duration carrying 100 marks and Internal Assessment of 100 marks.

THEORY - 100 Marks
1. Revision of Class IX Syllabus
(i) Introduction to Object Oriented Programming concepts, (ii) Elementary Concept of Objects and Classes, (iii) Values and
Data types, (iv) Operators in Java, (v) Input in Java, (vi) Mathematical Library Methods, (vii) Conditional constructs in Java,
(viii) Iterative constructs in Java, (ix) Nested for loops.
2. Class as the Basis of all Computation
Objects and Classes

Objects encapsulate state and behaviour - numerous examples; member variables; attributes or features. Variables define
state; member methods; Operations/methods/messages/ methods define behaviour.

Classes as abstractions for sets of objects; class as an object factory; primitive data types, composite data types. Variable
declarations for both types; difference between the two types. Objects as instances of a class.

Consider real life examples for explaining the concept of class and object.

3. User - defined Methods

Need of methods, syntax of methods, forms of methods, method definition, method calling, method overloading, declaration
of methods,

Ways to define a method, ways to invoke the methods - call by value [with programs] and call by reference [only definition
with an example], Object creation - invoking the methods with respect to use of multiple methods with different names to
implement modular programming, using data members and member methods, Actual parameters and formal parameters,
Declaration of methods - static and non-static, method prototype / signature, - Pure and impure methods, - pass by value
[with programs] and pass by reference [only definition with an example], Returning values from the methods, use of multiple
methods and more than one method with the same name (polymorphism - method overloading).

4. Constructors

Definition of Constructor, characteristics, types of constructors, use of constructors, constructor overloading.

Default constructor, parameterized constructor, constructor overloading., Difference between constructor and method. of
Constructor, characteristics, types of constructors, use of constructors, constructor overloading.

Default constructor, parameterized constructor, constructor overloading., Difference between constructor and method.

5. Library classes

Introduction to wrapper classes, methods of wrapper class and their usage with respect to numeric and character data types.
Autoboxing and Unboxing in wrapper classes.

Class as a composite type, distinction between primitive data type and composite data type or class types. Class may be
considered as a new data type created by the user, that has its own functionality. The distinction between primitive and
composite types should be discussed through examples. Show how classes allow user defined types in programs. All primitive
types have corresponding class wrappers. Introduce Autoboxing and Unboxing with their definition and simple examples.

The following methods are to be covered:

int parselnt(String s), long parseLong(String s),
float parseFloat(String s), double parseDouble(String s),
boolean isDigit(char ch), boolean isLetter(char ch),

boolean isLetterOrDigit(char ch), boolean isLowerCase(char ch),

boolean isUpperCase(char ch), boolean isWhitespace(char ch),
char toLowerCase (char ch) char toUpperCase(char ch)

6. Encapsulation
Access specifiers and its scope and visibility.
Access specifiers - private, protected and public. Visibility rules for private, protected and public access specifiers. Scope of
variables, class variables, instance variables, argument variables, local variables.

7. Arrays

Definition of an array, types of arrays, declaration, initialization and accepting data of single and double dimensional arrays,
accessing the elements of single dimensional and double dimensional arrays.

Arrays and their uses, sorting techniques - selection sort and bubble sort; Search techniques - linear search and binary
search, Array as a composite type, length statement to find the size of the array (sorting and searching techniques using
single dimensional array only).

Declaration, initialization, accepting data in a double dimensional array, sum of the elements in row, column and diagonal
elements [right and left], display the elements of two-dimensional array in a matrix format.

8. String handling
String class, methods of String class, implementation of String class methods, String array

The following String class methods are to be covered:

String trim () String toLowerCase()

String toUpperCase() int length()

char charAt (int n) int indexOf(char ch)

int lastIndexOf(char ch) String concat(String str)
boolean equals (String str) boolean equalsignoreCase(String str)
int compareTo(String str) int compareTolgnoreCase(String str)
String replace (char oldChar,char newChar) = String substring (int beginIndex)
String substring (int beginIndex, int endIndex) boolean startsWith(String str)
boolean endsWith(String str) String valueOf{(all types)

Programs based on the above methods, extracting and modifying characters of a string, alphabetical order of the strings in
an array [Bubble and Selection sort techniques], searching for a string using linear search technique.

INTERNAL ASSESSMENT - 100 Marks

This segment of the syllabus is totally practical oriented. The accent is on acquiring basic programming skills quickly and
efficiently.

Programming Assignments (Class X)
The students should complete a minimum of 20 laboratory assignments during the whole year to reinforce the concepts
studied in class.

Suggested list of Assignments:

The laboratory assignments will form the bulk of the course. Good assignments should have problems which require design,
implementation and testing. They should also embody one or more concepts that have been discussed in the theory class. A
significant proportion of the time has to be spent in the laboratory. Computing can only be learnt by doing.

The teacher-in-charge should maintain a record of all the assignments done by the student throughout the year and give it
due credit at the time of cumulative evaluation at the end of the year.

Some sample problems are given below as examples. The problems are of varying levels of difficulty:

(i) User defined methods

(a) Programs depicting the concept of pure, impure, static, non- static methods.

(b) Programs based on overloaded methods.
(c) Programs involving data members, member methods invoking the methods with respect to the object created.
(ii) Constructors
(a) Programs based on different types of constructors mentioned in the scope of the syllabus.
(b) Programs / outputs based on constructor overloading
(iii) Library classes
(a) Outputs based on all the methods mentioned in the scope of the syllabus.
(b) Programs to check whether a given character is an uppercase/ lowercase / digit etc.
(iv) Encapsulation
Questions based on identifying the different variables like local, instance, arguments, private, public, class variable etc.
(v) Arrays
(a) Programs based on accessing the elements of an array.
(b) Programs based on sort techniques mentioned in the scope of the syllabus.
(c) Programs based on search techniques mentioned in the scope of the syllabus.
(d) Programs on Double dimensional arrays as given in the scope of the syllabus.
(vi) String handling
(a) Outputs based on all the string methods mentioned in the scope of the syllabus.
(b) Programs based on extracting the characters from a given string and manipulating the same.
(c) Palindrome string, pig Latin, alphabetical order of characters, etc.

Important: This list is indicative only. Teachers and students should use their imagination to create innovative and
original assignments.

INTERNAL ASSESSMENT - 100 Marks
EVALUATION

The teacher-in-charge shall evaluate all the assignments done by the student throughout the year [both written and practical
work]. He/she shall ensure that most of the components of the syllabus have been used appropriately in the assignments.
Assignments should be with appropriate list of variables and comment statements. The student has to mention the output of
the programs.

Proposed Guidelines for Marking

The teacher should use the criteria below to judge the internal work done. Basically, four criteria are being suggested: class
design, coding and documentation, variable description and execution or output. The actual grading will be done by the
teacher based on his/her judgment. However, one possible way: divide the outcome for each criterion into one of 4 groups:
excellent, good, fair/acceptable, poor/unacceptable, then use numeric values for each grade and add to get the total.

Class design:
Has a suitable class (or classes) been used?
Are all attributes with the right kinds of types present?

Is encapsulation properly done?

Is the interface properly designed

Coding and documentation:

Is the coding done properly? (Choice of names, no unconditional jumps, proper organization of conditions, proper
choice of loops, error handling, code layout) Is the documentation complete and readable? (class documentation, variable
documentation, method documentation, constraints, known bugs - if any).

Variable description:

Format for variable description:

Name of the Variable Data Type Purpose/description

Execution or Output:
Does the program run on all sample input correctly?
Evaluation of practical work will be done as follows:

Subject Teacher (Internal Examiner) 50 marks

External Examiner 50 marks

Criteria (Total-50 marks) Class design | Variable de- Coding and Execution OR
(10 marks) scription (10 Documentation Output (20 marks)
marks) (10 marks)

Excellent 10 10 10 20

Good 8 8 16

Fair 6 6 12

Poor 4 4 8

An External Examiner shall be nominated by the Head of the School and may be a teacher from the faculty, but not teaching
the subject in the relevant section/class. For example, A teacher of Computer Science of class VIII may be deputed to be the

External Examiner for class X.

The total marks obtained out of 100 are to be sent to CISCE by the Head of the school.

The Head of the school will be responsible for the online entry of marks on CISCE’s CAREERS portal by the due date.

EQUIPMENT

There should be enough computer systems to provide for a teaching schedule where at least three-fourth of a time available
is used for programming and assignments/practical work. The course shall require at least 4 periods of about 40 minutes
duration per week. In one week, out of 4 periods the time should be divided as follows:

2 periods - Lecture cum demonstration by the Instructor.

2 periods — Assignments/Practical work.

The hardware and software platforms should be such that students can comfortably develop and run programs on those

machines.

Since hardware and software evolve and change very rapidly the schools shall need to upgrade them as required. Following

are the minimal specifications as of now.

RECOMMENDED FACILITIES:

A lecture cum demonstration room with a MULTIMEDIA PROJECTOR/ an LCD and Overhead Projector (OHP) at-
tached to the computer.

A white board with white board markers should be available.

A fully equipped Computer Laboratory that allows one computer per student.

The computers should have a minimum of 1 GB RAM and at least a P - IV or Equivalent Processor.

Good Quality printers.

A scanner, a web cam/a digital camera (Should be provided if possible).

SOFTWARE FOR CLASSES IX & X
Any suitable Operating System can be used.

For teaching fundamental concepts of computing using object oriented approach, Blue] environment (3.2 or higher version)
compatible with JDK (5.0 or higher version) as the base or any other editor or IDE, compatible with JDK (5.0 or higher

version) as the base may be used. Ensure that the latest versions of software are used.

Aligned with NEP 2020 and NCF 2023

FEATURES OF NEP 2020

21st Century Skills

\ Learning
—) Skills (4Cs)

Life Skills
(FLIPS)

Critical Thinking v Information Literacy Flexibility

Creativity v Media Literacy

N

Leadership &

Communication v Technology Literacy Responsibili

v
v
v
\‘ v Collaboration
\

\

Initiative

ty

Productivity &

ity

Social Interaction

/ Accountabil
/)

I/

The Six Pramanas

BASED ON NCF 2023 II

In NCF 2023, curriculum means not only what Inference Perception
is given in the books, but also how the learners
learn in school, the school's environment, and Verbal Testimony

more. To make learning better, we need positive
changesin all these areas.

Postulation

Comparison

Non- Apprehension

How to Access Digital Content through QR Code

For Website Users

“Visit “digital.inventanteducation.com”

Click “Register” button available on the top-right.

Select ‘Teacher/Student’ in ‘User’ Type.

Enter your name, email, mobile number and password.

Click ‘Register’, and Enter the OTP to verify your mobile/email.

LN X X XX

view the required content.

For Mobile Users

v" Go to Google Play Store or Apple App Store.
v Type 'Edu Invent' in the search bar.

v Tap ‘Install. The app will take a few moments to download and
install.

Once installed, tap ‘Open’ to launch the app.
Register yourself and login on the app.
On the dashboard, click Scan QR Code button.

Scan a QR Code printed in the book to explore the learning
content associated with the QR Code.

Once registered, login on to the website and go to Scan and
Learn section. Enter the Codes printed below the QR Codes to

Scan this QR code to
download the app

ko A N i e L
|

RevisionofclassIXcovvvuuo....

e Introduction to OOPs

- Elementary concepts of objects and
classes

« Real-World Vs. software classes and
objects

« Values and data type

« Encoding of characters
+ Escape sequence

- Tokens
e« Errors

Class as the basic of all computation

e Introduction
« Object

+ Class
« Difference between class and object

« Creating objects of a class

User Defined Method...................

e Introduction
« Method

« Actual and formal parameters
« Invoke a method

.Constructor......cooiiiiiiiiienennnnns

« Introduction

« Constructor

« Call aconstructor

« Characteristics of a constructor

- Different types of constructors

Input in Java
Mathematical Library Method
Conditional statements in Java

Unusual termination of a
program(System.exit(0))

I[terative construct in Java
Break statement in Java
Continue statement

Entry and exit controlled loop
Nested loop in Java

Different components of a class

Nested class
Class as an object factory

Using this keyword

Static and non-static methods
Pure and impure methods
Method overloading

Constructor overloading

Difference between constructor and
method

Similarity between constructor and
method

. LibraryClasses........ccccvieeenn...

« Introduction
« Need of wrapper classes

« Primitive and composite data typesin
Java

« How to use wrapper class?

« Methods used in wrapper classes and
their usages

. Encapsulation and Inheritance..........

« Introduction
« Encapsulation
« Access specifier

« Introduction
« Array real-life examples

+ Array

. StringHandling........................

« Introduction
« String classin Java

« Methods of the string class

E Practical exercise
H Project
E Viva questions

.................................. 172
Autoboxing and unboxing
Parse and character functions
Conversion from characters to ASCII
values
Conversion from ASCII values to
characters
.................................. 196
Scope of variables
Scope of variable related to block
Inheritance
.................................. 219
Sorting
Searching
.................................. 265
String array in Java
Graphical representation of a string
array
298
343
346

Revision of class IX

Learning Objectives @
After studying this chapter, you will be able to:

O Understand the key concepts of OOP, including classes, objects, and the four principles of OOP (Encapsulation, Abstraction,
Inheritance, and Polymorphism)

Differentiate between procedural and object-oriented programming approaches

Explain what a class and an object are in Java

Understand the different data types in Java (primitive types like int, float, char, boolean, etc., and reference types like objects)
Identify the difference between primitive and reference data types

Perform type conversions between different data types

Recognize the different types of operators in Java (arithmetic, relational, logical, bitwise, assignment, etc.)

Understand the precedence and associativity of operators in Java expressions

Understand how to take user input in Java using the Scanner class

Differentiate between various input methods in Java, such as Scanner, BufferedReader, and command-line arguments

Use common mathematical methods (like Math.sqrt(), Math.pow(), Math.abs(), Math.max(), etc.) in Java programs
Understand the syntax and use of iterative constructs (for, while, do-while) for repeated execution of code

Apply loops and conditions together to create efficient Java programs

Understand the structure and working of nested for loops in Java

OO0 00000000000

INTRODUCTION TO OOPS

As the name suggests, Object-Oriented Programming or Java OOPs concept refers to languages that use
objects in programming, they use objects as a primary source to implement what is to happen in the code.
Objects are seen by the viewer or user, performing tasks you assign.

Object-oriented programming aims to implement real-world entities like inheritance, hiding, polymorphism,
etc. in programming. The main aim of OOPs is to bind together the data and the functions that operate
on them so that no other part of the code can access this data except that function.

Benefits of OOPs
The key benefits of OOP are as follows:

1. Code Reusability: Enables developers to reuse existing code by inheriting from existing classes. This
reduces redundancy and accelerates development by leveraging pre-existing, tested code.

2. Modularity: Encourages the organization of code into distinct, self-contained objects or modules. This
separation improves code readability, maintainability, and debugging by isolating functionality.

3. Improved Maintainability: The modular nature of OOP makes it easier to update or fix parts of the
system without affecting other parts. This leads to more maintainable and scalable code.

ICSE Computer Application-X @

4. Enhanced Productivity: By reusing existing components and working with well-defined abstractions,
developers can work more efficiently and reduce development time.

5. Better Data Management: Encapsulation ensures that data is managed and protected within objects,
leading to better control over data access and modification.

6. Design Flexibility: OOP facilitates the use of design patterns and principles, which provide flexible
solutions to common design problems. This results in adaptable systems that can evolve with changing
requirements.

7. Scalability: The modular and reusable nature of OOP makes it easier to scale applications as new
features or functionalities can be added without overhauling the existing system.

8. Enhanced Collaboration: OOP’s modular approach allows multiple developers to work on different
parts of the system simultaneously, improving team collaboration and efficiency.

Principles of OOPs
The principles of Object-Oriented Programming (OOP) using everyday examples:

1. Encapsulation: Encapsulation is like putting things inside a box with a lock. The box keeps everything
inside safe and secure, and you only have a few keys (methods) to access what’s inside.

Example: Imagine a television remote control. The remote has
buttons (methods) for turning the TV on and off, changing
channels, and adjusting volume. You don’'t need to know how
the remote works internally (how the buttons send signals to
the TV). You just use the remote to interact with the TV.

public class RemoteControl ({

private boolean power; // State (encapsulated)
// Method to turn TV on or off
public void togglePower () {
power = !power;
System.out.println(“TV is “ + (power ? “On” : “Off”));

}
f ° PO
2. Abstraction: Abstraction is like using Definition

a smartphone. You interact with apps
through a simple interface without | Data Abstraction is the process of defining a data structure by
needing to understand the complex providing a simplified view of its interface, hiding the internal
technology behind them. implementation details and complexities. It emphasizes the
“what” an object does rather than “how” it does it.

Example: Think of a car’s dashboard.
The dashboard shows you essential information like speed and fuel level. You don't need to know the
complex mechanics of the engine to drive the car; you just use
the dashboard to get what you need.

abstract class Vehicle {

abstract void start(); // Abstract method (no body)
}
class Car extends Vehicle {

void start() {

System.out.println(“Car engine starts with a key.”);

}

}

ICSE Computer Application-X

o

EXTRA TIME

Data abstraction helps in reducing complexity by allowing the user to interact with the system at a
higher level without needing to understand the internal workings.

3. Data Hiding: It is a concept in Object-Oriented

Programming (OOP) that refers to restricting access
to the internal state or implementation details of an | Data Hiding is the practice of making the internal
object. It ensures that the object’s data is protected from | details of an object private or inaccessible to the
unauthorized access and modification, promoting | Outside world. This is achieved by defining access
. . . modifiers for the class members (fields and
encapsulation and increasing the robustness of the s
methods) to control visibility and access.

code. y,

Example: Imagine you have a secret diary that contains your personal thoughts and feelings. To keep
your diary private, you use a lock and key. Only you, with the key, can open the diary and read or
write inside it.

i. Diary (Class): The diary represents an object, and the information inside (your thoughts) is the data.
ii. Lock and Key (Data Hiding): The lock and key represent data hiding. They prevent anyone else
from accessing the diary without your permission.
Example:
public class SecretDiary {
// Private data (just like your personal diary content)
private String diaryEntry;
// Constructor to initialize the diary entry
public SecretDiary(String entry) {
this.diaryEntry = entry;
}
// Public method to read the diary entry
public String readDiary() {
return diaryEntry;
}
// Public method to update the diary entry
public void updateDiary (String newEntry) {
this.diaryEntry = newEntry;

}
Explanation:

a. Private Data (diaryEntry): Just like the secret content in your diary, the diaryEntry is private and
cannot be accessed directly from outside the SecretDiary class.

b. Public Methods (readDiary, updateDiary): These methods are like you deciding who can read or
update your diary. They control how the data is accessed and modified, ensuring that others can
only interact with the data in ways you allow.

4. Inheritance: Inheritance is like a child inheriting traits from their parents. If a parent has a trait, the
child automatically gets that trait.

ICSE Computer Application-X

©

a. Base Class: A base class (also known as a parent class or superclass) is a class that provides common
attributes and methods that other classes can inherit. It serves as the foundation for creating other
classes.

The base class encapsulates common functionality that can be shared among multiple derived classes,
promoting code reuse and reducing redundancy.

b. Derived Class: A derived class (also known as a child class or subclass) is a class that inherits
attributes and methods from a base class. It extends or modifies the functionality of the base class.

The derived class builds on top of the base class, allowing for specialization and additional features while
reusing the base class’s existing functionality.

Example: Imagine you have a base class called Animal. You have specific animals like Dog and Cat
that inherit traits from Animal (like eating and sleeping) but also have their unique traits (like barking
or meowing).
// Base Class
class Animal {
// Base class attributes
String name;
// Constructor
public Animal (String name) {
this.name = name;
}
// Base class method
void eat() {
System.out.println(name + “ is eating.”);

}
// Derived Class
class Dog extends Animal ({
// Additional attribute specific to Dog
String breed;
// Constructor
public Dog(String name, String breed) {
super (name); // Call the constructor of the base class
this.breed = breed;
}
// Derived class method
void bark() {
System.out.println(name + “ is barking.”);

}

// Main class to test the above classes

public class Main {

public static wvoid main(String[] args) {

// Create an object of the derived class
Dog myDog = new Dog(“Buddy”, “Golden Retriever”);
// Call methods from both base and derived classes
myDog.eat () ; // Inherited from Animal
myDog.bark(); // Defined in Dog

ICSE Computer Application-X

Explanation:

a. Base Class (Animal):

Has a common attribute name and a method eat().
Provides a common interface for all animals.
b. Derived Class (Dog):

Inherits the name attribute and eat() method from the Animal class.
Adds its own attribute breed and method bark().
Uses super(name) to initialize the base class attribute.

Benefits of base and derived classes

i. Code Reusability: Derived classes reuse code from the base class, reducing duplication.

ii. Extensibility: New functionality can be added to derived classes without modifying the base class.

maintenance easier.
Example:
// Base Class
class Animal {
void eat() {

System.out.println (“This animal eats food.”);

}
// Derived Class (Single Inheritance)
class Dog extends Animal ({
void bark() {
System.out.println (“The dog barks.”);

}
// Further Derived Class (Multilevel Inheritance)
class Bulldog extends Dog ({

void bulldogSpecificBehaviour () {

System.out.println (“The bulldog has specific behaviours.”);

}
public class Main {
public static void main(String[] args) {

Bulldog myBulldog = new Bulldog();
// Accessing methods from the base class
myBulldog.eat (); // Output: This animal eats food.
// Accessing methods from the immediate base class
myBulldog.bark(); // Output: The dog barks.
// Accessing methods from the derived class

iii. Maintainability: Changes in the base class automatically propagate to derived classes, making

myBulldog.bulldogSpecificBehaviour (); // Output: The bulldog has specific

behaviours.

}

ICSE Computer Application-X

Advantages of Inheritance

The advantages of inheritance are as follows:

i. Code Reusability: Inheritance allows you to reuse existing code, reducing redundancy and improving
maintainability.

ii. Method Overriding: Derived classes can provide specific implementations of methods already
defined in the base class.

iii. Hierarchical Organization: It helps in organizing classes into a hierarchy, making the code more
intuitive and manageable.

/Y know More I8

* Inheritance in OOP allows you to create new classes that reuse, extend, or modify the behaviour defined
in other classes. It promotes code reuse, hierarchical organization, and flexibility in managing and
extending code.

5. Polymorphism: Polymorphism is like a Swiss Army knife that can be used in many ways. It allows
the same tool (method) to perform different tasks depending on how you use it.

Example:

Imagine you have a device called a printer that can perform different tasks. The printer can be of
different types, such as:

i. Inkjet Printer
ii. Laser Printer

Even though these printers are different, they all have a common function: print(). Polymorphism allows
you to use the print() function in a way that is appropriate for each type of printer.

Example

// Base class
class Printer {
// Common method
void print() {
System.out.println (“Printing...”);

}
// Derived class: InkjetPrinter
class InkjetPrinter extends Printer {
// Overridden method
@Override
void print() {
System.out.println (“Printing in colour with Inkjet Printer...”);

}

// Derived class: LaserPrinter
class LaserPrinter extends Printer {
// Overridden method
@Override
void print() {
System.out.println (“Printing quickly with Laser Printer...”);

ICSE Computer Application-X

}
}
// Main class to test polymorphism
public class Main {
public static void main(String[] args) {
// Create objects of different types
Printer myPrinterl = new InkjetPrinter();
Printer myPrinter2 = new LaserPrinter();
// Call the print method on both objects
myPrinterl.print () ; // Output: Printing in colour with Inkjet Printer...
myPrinter2.print () ; // Output: Printing quickly with Laser Printer...

1
Explanation:

Base Class (Printer): Has a general method print() that performs a common task.

Derived Classes (InkjetPrinter and LaserPrinter):

Each derived class overrides the print() method to provide a specific implementation suited to its type.
InkjetPrinter provides a detailed print statement for colour printing.

LaserPrinter provides a detailed print statement for fast printing.

Polymorphism in Action: When you call print() on an InkjetPrinter object, it uses the print() method
defined in the InkjetPrinter class.

When you call print() on a LaserPrinter object, it uses the print() method defined in the LaserPrinter class.

Despite both objects being referred to by the Printer type, each object uses its specific version of the print()
method.

ELEMENTARY CONCEPTS OF OBJECTS AND CLASSES

Class: A class in programming is like a template or a blueprint used to create objects. Think of it as a recipe
for making something. Just as a recipe tells you what ingredients you need and how to mix them to make
a dish, a class defines what properties (attributes) and actions (methods) an object will have.

Example:
Imagine you want to create various types of sandwiches.

The recipe is a detailed guide on how to make a sandwich. It tells you what ingredients to use (like
bread, cheese, and ham) and how to assemble them (like spreading butter on the bread and layering the
ingredients).

The class is like this recipe. It outlines the properties (what ingredients or attributes are needed) and methods
(how to prepare the sandwich or actions the object can perform).

Creating an object of a class in Java

In Java, creating an object of a class involves the following steps:

1. Define the Class: Create a class that serves as a template for objects. The class includes attributes
(fields) and methods (functions).

2. Create an Object: Use the new keyword followed by the class constructor to create an instance of
the class.

ICSE Computer Application-X

©

3. Use the Object: Access the attributes and methods of the object using the dot (.) operator.

Example

Let's walk through a complete example.
Define the Class:
// Define the class
public class Car {
// Attributes
String colour;
String model;
int vyear;
// Constructor
Car (String colour, String model, int vyear) {

this.colour = colour;
this.model = model;
this.year = year;

}

// Method to display car details

void displayInfo() {
System.out.println(“Car Model: “ + model);
System.out.println (“Car Colour: “ + colour);
System.out.println(“Car Year: “ + year);

}
Create an Object:
public class Main {

public static wvoid main(String[] args) {
// Create an object of the Car class
Car myCar = new Car(“Red”, “Toyota Corolla”, 2020);

// Use the object’s method
myCar.displayInfo();

}
Explanation

Class Definition:
Attributes: colour, model, and year are attributes of the Car class.

Constructor: Car(String colour, String model, int year) initializes the attributes with the values provided
when creating the object.

Method: displayInfo() prints the car’s details.
Creating an Object:

Car myCar = new Car(“Red”, “Toyota Corolla”, 2020); creates an object of the Car class. The new keyword
allocates memory for the object, and the constructor initializes it with the provided values.

Using the Object: myCar.displayInfo(); calls the displaylnfo() method on the myCar object, which prints
the car’s details.

Example: Write a program in Java to calculate the area of a circle.
import Jjava.util.Scanner;
public class CircleArea {
// Method to calculate the area of a circle

ICSE Computer Application-X

Output

Features of class

System.out.println (“"The area of the circle with radius “ + radius +

public static double calculateArea(double radius) {

return Math.PI * radius * radius;

public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
// Prompt the user to enter the radius
System.out.print (“Enter the radius of the circle: “);
double radius = scanner.nextDouble();
// Calculate the area
double area = calculateArea(radius);

// Display the result

// Close the scanner
scanner.close();

N is: Y 4+ area);

<

“B Blue): Terminal Window - 1222 - o

Enter the radius of the circle: 12
The area of the circle with radius 12.6 is: 452.38934211693062

g

v

1. Class as an Object Factory: A class serves as a blueprint or factory for creating objects. It defines the
structure and behaviour that the objects (instances) will have.

Example: In Java, new Car() creates an instance of the Car class using its blueprint.

2. Object as an Instance of a Class: An object is a concrete instance of a class. While the class defines
the structure and behaviour, an object represents a specific implementation of that class, holding actual
values for its fields.

Example: Car myCar = new Car(“Toyota”, 2020); creates an object myCar of type Car.

3. Class as a User-Defined Data Type: A class allows you to define a new data type that can include
fields (attributes) and methods (functions). This custom data type can be used to model real-world
entities or concepts in your program.

Example: class Person { String name; int age; } defines a new data type Person with name and age fields.
// Define a class named Person (User-Defined Data Type)

public class Person {

// Fields

(Attributes)

String name;

int age;

// Constructor

public Person(String name, int age) {

}

this.name = name;
this.age = age;

// Method to display person information

public void displayInfo() {

System.out.println (“Name: “ + name);

ICSE Computer Application-X

w

System.out.println (“Age: + age);

}
// Main method to test the Person class

public static wvoid main(String[] args) {
// Create instances of Person (Objects)
Person personl = new Person(“Alice”, 30);
Person person?2 = new Person(“Bob”, 25);
// Display information of each person
personl.displayInfo(); // Output: Name: Alice, Age: 30
person2.displayInfo(); // Output: Name: Bob, Age: 25

}
Objects

In programming, especially in Object-Oriented Programming (OOP), an object is an instance of a class.
It encapsulates both data (attributes) and behaviours (methods) that are defined in the class. Objects are
fundamental to understanding how OOP works, as they represent real-world entities or abstract concepts
within a program.

Characteristics of an Object

The characteristics of an object are as follows:

i. State: Defined by the attributes of the object. These are variables that hold data specific to the object.

ii. Behaviour: Defined by the methods of the object. These are functions or operations that the object
can perform or that can be performed on it.

iii. Identity: Each object has a unique identity, which differentiates it from other objects, even if they
have the same state and behaviour.

Example
Consider a Car class. Here’s how you define and use objects in Java:
// Define a class named Car
public class Car {
// Fields (Attributes)
String make;
String model;
int vyear;
// Constructor
public Car(String make, String model, int vyear) {

this.make = make;
this.model = model;
this.year = year;

}

// Method to display car information

public wvoid displayInfo() {
System.out.println (“Make: “ + make);
System.out.println (“Model: “ + model);
System.out.println (“Year: “ + vyear);

}

// Main method to create and use Car objects

public static void main(String[] args) {
// Create instances (objects) of Car

ICSE Computer Application-X

Car carl = new Car(“Toyota”, “Camry”, 2022);
Car car2 = new Car(“Honda”, “Civic”, 2021);
// Use methods on objects

carl.displayInfo();

car2.displayInfo();

}
Explanation:

Objects created: carl and car2 are objects of the Car class.
State: Each object has its own make, model, and year.

Behaviour: The displaylnfo method operates on each Car object to display its details.

REAL-WORLD VS. SOFTWARE CLASSES AND OBJECTS

1. Real-World Classes and Objects: In the real world, a class is a blueprint or prototype for creating
objects (instances). Here’s how the concept translates to real-world examples:

Class: Think of a class as a general concept or category. For example, “Vehicle” is a class. It represents
a category that includes various types of vehicles.

Object: An object is an actual instance of a class. For example, “Toyota Camry” is a specific instance
of the “Vehicle” class. Each Toyota Camry has specific attributes and can perform certain
actions.

Real-World Example:
Class: Vehicle
Attributes: Type, Colour, Brand
Behaviour: Drive, Stop
Object: Toyota Camry
Attributes: Type: Sedan, Colour: Blue, Brand: Toyota
Behaviour: Drive, Stop
2. Software Classes and Objects: In software development, the concepts of classes and objects are similar
but applied in the context of programming:

Class: A class in software is a blueprint that defines attributes (fields) and behaviours (methods) for
objects. Its a template from which objects are created.

Object: An object in software is an instance of a class. It encapsulates data and methods defined in
the class.

Software Example:

Class: Vehicle

Attributes: type, colour, brand

Methods: drive(), stop()

Object: toyotaCamry

Attributes: type: Sedan, colour: Blue, brand: Toyota
Methods: drive(), stop()

ICSE Computer Application-X

©

Comparison between real-world example and software example

Real-World Example Software Example

Template for creating objects (e.g., Vehicle

Class Blueprint of a general category (e.g., Vehicle) class)

An instance of a class with specific

Object A specific instance of a class (e.g., Toyota Camry) B

Fields or properties in a class (e.g., colour,

Attributes Characteristics or properties (e.g., Colour, Brand) brand)

Behaviour Actions or functionalities (e.g., Drive, Stop) Methods in a class (e.g., drive(), stop())

Creation of an object in memory (e.g.,

Instantiation Physical entity (e.g., a car) new Vehicle())

VALUES AND DATA TYPE

Have you ever wondered what the world would be like if people and things had no names? Think about
it, every time you refer to a person or thing, you would have to describe their specific physical appearance
because they have no name you can identify them with. Moreover, how do you think contacts on your
phone would appear if your contacts had no name in the first place? Strange, right?

Naming is as vital in programming languages as it is in our everyday life, and that's where identifiers in Java
have a role to play. Just like naming people is a way to identify them, Java identifiers allow the programmer
to refer to different items in a program.

Character Set

In Java, a character set is essentially a collection of characters that can be used in programming. This
includes letters, digits, operators, and delimiters. Each of these components plays a crucial role in writing
and structuring Java code.

1. Letters: Java uses letters from the alphabet for variable names, method names, class names, and more.
Both uppercase and lowercase letters are used.
Uppercase Letters: A, B, C, ..., Z
Lowercase Letters: a, b, ¢, ..., z
Examples:
int age; // @ and ‘g’ are letters

String name; // ‘n, @, ‘m; and ‘¢ are letters

2. Digits: Digits are used to represent numbers in Java. They are crucial for defining integer and floating-
point values.

Digits: 0, 1, 2, 3,4, 5,6,7,8,9

Examples:

int number = 123; // 1] 2} 3’ are digits
double price = 19.99; // 1} “9; ‘9, ‘9" are digits

ICSE Computer Application-X

o

3. Operators: Operators are symbols used to perform operations on variables and values. Java includes
several types of operators:

a. Arithmetic Operators: +, -, *, /, %

b. Relational Operators: ==, =, >, <, >=, <=

c. Logical Operators: &&, ||, !

d. Assignment Operators: =, +=, -=, *=, /=, %=

Examples:
int sum = 5 + 3; // + is an arithmetic operator
boolean result = (5 > 3) && (3 < 4); // ‘&&’ is a logical operator

4. Delimiters: Delimiters are symbols used to separate and organize code. They include punctuation
marks that help define the structure of Java programs:

a. Semicolon (;): Used to terminate statements.

b. Comma (,): Used to separate items in lists.

c. Parentheses (()): Used to group expressions and parameters.

d. Braces ({}): Used to define the beginning and end of a block of code.

e. Brackets ([]): Used for arrays and indexing.

Examples:

int[] numbers = {1, 2, 3, 4, 5}; // Y} and ‘[]’ are delimiters

public void display() { // “{}’ denotes the start and end of the method body
System.out.println(“Hello, World!”); // ;' denotes the end of the statement

}

4 < ..
ENCODING OF CHARACTERS

It refers to the process of representing characters in a digital format | Character encoding is the process of
so that they can be understood and processed by computers. In | converting characters into a format
programming languages like Java, character encoding plays a critical | that can be stored and manipulated by
role in ensuring that text data is correctly interpreted and displayed. | computers.

Two common encoding systems are ASCII and Unicode.

1. ASCII (American Standard Code for Information Interchange): ASCII is one of the earliest character
encoding standards, used primarily for representing English characters and basic symbols.

i. Character Set: ASCII includes 128 characters. These consist of:
ii. 33 control characters (e.g., newline, carriage return)
iii. 95 printable characters (e.g., letters, digits, punctuation)

iv. Encoding: Each character is represented by a 7-bit binary number.

v. Range: The values range from 0 to 127.

ICSE Computer Application-X

©

Example Encoding:
1. The letter A is encoded as 65 (binary: 01000001).
2. The digit ‘0’ is encoded as 48 (binary: 00110000).

ASCII Example in Java:
public class ASCIIDemo {

public static void main(String[] args) {
char character = 1‘A’;
int asciivValue = (int) character;

System.out.println (“ASCII wvalue of '’ + character + “ is: “ + asciiValue);

}
ASCII Table Example:

ASCII Code (Decimal)

A 65 01000001
‘B’ 66 01000010
0 48 00110000
‘T 49 00110001

2. Unicode: Unicode is a comprehensive character encoding standard designed to include characters from
virtually all writing systems in use today.

a. Character Set: Unicode includes a vast number of characters—over 143,000 from various languages
and symbol sets.

b. Encoding Forms:

i. UTEF-8: Variable-length encoding; uses 1 to 4 bytes per character.
ii. UTF-16: Variable-length encoding; uses 2 or 4 bytes per character.
iii. UTF-32: Fixed-length encoding; uses 4 bytes per character.

Example Encoding:

i. The letter ‘A’ is encoded as U+0041 in Unicode.
ii. The smiley face ‘@)’ is encoded as U+1F60A in Unicode.

Example:

public class UnicodeDemo {
public static void main(String[] args) {
char unicodeChar = "; // Unicode character
int unicodeValue = (int) wunicodeChar;
1 System.out.println (“Unicode code point of ‘” + unicodeChar + “/ is: “ + unicodeValue);

}

o

ICSE Computer Application-X

ESCAPE SEQUENCE a m 3
There are some characters which when used with a < h

special character (\) brings out a different meaning * Java allows you to represent special characters
to itself. Such combination of characters is called using escape sequences, such as \n for newline,
an escape sequence. An escape sequence is a \t for tab, and \uXXXX for Unicode characters,
combination of characters that has a meaning other where XXXX is the hexadecimal representation
than the literal characters contained therein, and is of the Unicode code point.

marked by one or more preceding (and possibly

terminating) characters.

For example, when you want to enter a new line while printing, you use \n’ to print a newline. Notice
how “\n’ is contained within quotes. Whenever Java compiler comes across forward slash \, it reads the next
character as well because it knows this is an escape sequence.

Several other escape sequences in Java are:

1. Backspace is replaced with \b
Newline is replaced with \n

Tab is replaced with \t

Carriage return is replaced with \r
Form feed is replaced with \f
Double quote is replaced with \”

Backslash is replaced with \\ & m =

Single quote is replaced by \’

* Escape sequences in Java allow you to
Horizontal tab is replaced by \t include special characters in strings that

¥ ® N Uk WD

Escape sequences enable you to include special characters might otherwise be difficult to represent.

in strings and format text in a way that is meaningful and
readable. managing string content effectively.

They are essential for formatting text and

Example:
public class EscapeSequenceDemo {
public static void main(String[] args) {

// New Line
System.out.println (“Hello\nWorld”) ;
// Carriage Return
System.out.println (“Hello\rWorld”) ;
// Tab
System.out.println (“Hello\tWorld”) ;
// Backslash
System.out.println (“"This is a backslash: \\”);
// Single Quote
System.out.println (“It\’s a test.”);
// Double Quote
System.out.println (“He said, \”Hello!\””);
// Unicode Character
System.out.println (“Unicode Character: \u0041”); // Prints ‘A’

ICSE Computer Application-X

Output

& Blue): Terminal Window - 1222 — m] x

Hello

World

Hello

Hello World

This is a backslash: \
It's a test.

He said, "Hello!"
Unicode Character: A

< >

TOKENS

In Java, tokens are the smallest units of a program that have meaning. Tokens are categorised based on
their role in the syntax of the language. They are the building blocks of Java code. Here’s a breakdown of
the different types of tokens in Java:

Types of Tokens in Java
1. Keywords: Reserved words that have a special meaning in Java. They cannot be used as identifiers
(e.g., variable names, function names).
Examples: class, public, static, void, if, else, for, while, int, return.

2. Identifiers: Names given to variables, methods, classes, and other user-defined elements. Identifiers
must start with a letter, underscore, or dollar sign, and can be followed by letters, digits, underscores,
or dollar signs.

Examples: myVariable, calculateSum, Student, MAX_VALUE.

3. Literals: Constants that represent fixed values in your code.

Types of Literals:
i. Integer Literals: 10, 0xA (hexadecimal), 077 (octal).
ii. Floating-Point Literals: 3.14, 0.5e2 (scientific notation).
iii. Character Literals: @, \n’ (newline), \u0041’ (Unicode for A).
iv. String Literals: “Hello World”, “Java”
4. Operators: Symbols used to perform operations on variables and values.
Types of Operators:
i. Arithmetic Operators: +, -, *, /, %.
ii. Relational Operators: ==, !=, <, >, <=, >=.
iii. Logical Operators: &&, ||, !.
iv. Assignment Operators: =, +=, -=, *=, /=
v. Unary Operators: +, -, ++, --.

vi. Bitwise Operators: &, |, 7, ~, <<, >>, >>>.

ICSE Computer Application-X

5. Separators (Delimiters): Symbols that separate or group parts of the code.

Examples:
Parentheses: ()
Braces: {}
Brackets: []
Comma: ,
Semicolon: ;
Dot:

6. Comments: Annotations in the code that are not executed but provide explanations or notes.

Types of Comments:

1. Single-Line Comments: // This is a comment
2. Multi-Line Comments: /* This is a comment */
3. Documentation Comments: /** This is a documentation comment */

Example:
public class Example {
public static void main(String[] args) {

// Keywords and Identifiers

int number = 10; // int and number are identifiers, 10 is an integer literal
// Operators
int result = number * 2; // * 1is an arithmetic operator
// String Literal
String message = "“The result is: “ + result;

// “The result is: “ and result are part of the string literal
// Printing

System.out.println (message); // println is a method call

ERRORS

Errors in Java are issues that occurs during the execution of a program, Causing it to stop unexpectedly.

Types of errors

In Java, errors can be categorized into several types, each representing different issues that can occur during
the compilation or execution of a program. Understanding these errors helps in diagnosing and fixing
problems in Java applications.

1. Syntax Errors: These occur when the code does not conform to the syntax rules of the Java
programming language.

Examples:
i. Missing semicolons (;)
ii. Mismatched parentheses, braces, or brackets

iii. Incorrect usage of keywords or operators

ICSE Computer Application-X

Example:

public class SyntaxErrorExample {
public static wvoid main(String[] args) {
System.out.println (“Hello, World!”) // Missing semicolon

}
2. Compile-Time Errors: Errors detected by the Java compiler during the compilation process.
Types:
i. Syntax Errors
ii. Type Errors: Incorrect data types used.

iii. Missing Return Statement: Methods that are supposed to return a value but do not.

Example:
public class CompileTimeErrorExample {
public static wvoid main(String[] args) {
int a = “string”; // Type mismatch error

}
3. Runtime Errors: Errors that occur during the execution of the program, after successful compilation.

Examples:
i. ArithmeticException: Division by zero

ii. NullPointerException: Attempting to use an object reference that is null

iii. ArrayIndexOutOfBoundsException: Accessing an invalid index in an array

Example:
public class RuntimeErrorExample {
public static void main(String[] args) {
int[] arr = new int[5];

System.out.println(arr[10]); // ArrayIndexOutOfBoundsException

}

4. Logical Errors: Errors that do not cause the program to crash but produce incorrect results. These
are errors in the logic of the program.

Examples:

i. Incorrect algorithm or calculations

ii. Wrong conditions in loops or conditional statements

Example:
public class LogicalErrorExample {
public static void main(String[] args) {
int a = 10;
int b = 20;
System.out.println(a - b); // Logical error if the expected result was a + Db

ICSE Computer Application-X

INPUT IN JAVA

In Java, there are several ways to take input from the user. The most common method is using the Scanner
class, which is part of the java.util package. Here is an overview of how to use the Scanner class and other
methods for taking input in Java.

1. Using the Scanner Class: The Scanner class is commonly used to take input from the console.

Example:

import java.util.Scanner;

public class InputExample {

public static void main(String[] args) {

Scanner scanner = new Scanner (System.in);
// Taking integer input
System.out.print (“Enter an integer: “);
int intValue = scanner.nextInt();
System.out.println (“You entered: “ + intValue);
// Taking double input
System.out.print (“Enter a double: “);
double doubleValue = scanner.nextDouble();
System.out.println(“You entered: “ + doubleValue);
// Taking string input
scanner.nextLine(); // Consume newline left-over
System.out.print (“Enter a string: “);
String stringValue = scanner.nextlLine();

AN

System.out.println (“You entered: + stringValue);

scanner.close () ;

}

2. Using BufferedReader and InputStreamReader: The BufferedReader class is used to read text from
a character-input stream, buffering characters to provide efficient reading of characters, arrays, and
lines.

Example:

import java.io.BufferedReader;

import java.io.InputStreamReader;
import java.io.IOException;

public class BufferedReaderExample {

public static void main(String[] args) {
BufferedReader reader = new BufferedReader (new InputStreamReader (System.in));
try |

// Taking integer input

System.out.print ("Enter an integer: “);

int intValue = Integer.parselnt (reader.readLine());
System.out.println (“You entered: “ + intValue);

// Taking double input

System.out.print ("Enter a double: “);

double doubleValue = Double.parseDouble (reader.readLine()):;
System.out.println(“You entered: “ + doubleValue);
// Taking string input

System.out.print ("Enter a string: “);

String stringValue = reader.readlLine();
System.out.println(“You entered: “ + stringValue);

ICSE Computer Application-X

} catch (IOException e) {
e.printStackTrace () ;

}

4. Using Function Arguments: Function arguments are values passed to methods when they are called.
These are used to provide inputs to methods and functions.

Example:

public class FunctionArgumentsExample {
// Method to display a message with a name and age
public static wvoid displayInfo(String name, int age) {

System.out.println (“Name: “ + name);
System.out.println (“Age: “ + age);
}
public static void main(String[] args) {

// Calling the method with arguments
displayInfo (“Alice”, 25);

}

In this example, the displaylnfo method accepts name and age as parameters and prints them. The values
for name and age are passed when calling the method from main.

5. Command-Line Arguments: Command-line arguments are values provided to the program when it is
executed from the command line. These are passed to the main method as an array of String objects.

Example:
public class CommandLineArgumentsExample {
public static void main(String[] args) {
// Check if any command-line arguments are provided
if (args.length > 0) {
System.out.println (“Command-line arguments provided:”);
// Iterate through the arguments and print them
for (int i1 = 0; 1 < args.length; i++) {
System.out.println (“Argument “ + (i + 1) + “: ™ + args[i]);
}
} else {
System.out.println ("No command-line arguments provided.”);

}
MATHEMATICAL LIBRARY METHOD

In Java, the Math class provides a set of static methods to perform basic numeric operations and mathematical
functions. These methods include calculations for trigonometric functions, logarithms, exponentiation, and
more.

Methods of Math class

The Math class in Java is a part of the javalang package, and it provides a collection of methods for
performing basic numeric operations such as exponentiation, logarithms, square roots, and trigonometric

functions.
ICSE Computer Application-X

Some commonly used methods in the Math class along with examples:

1.

10.

11.

12.

13.

14.

15.

ICSE Computer Application-X

abs(): Returns the absolute value of a number.

int absValue = Math.abs(-10); // absValue is 10
max(): Returns the maximum of two numbers.

int maxValue = Math.max(5, 10); // maxValue is 10
min(): Returns the minimum of two numbers.

int minValue = Math.min(5, 10); // minValue is 5
sqrt(): Returns the square root of a number.

double sqrtValue = Math.sqrt(16); // sqrtValue is 4.0

pow(): Returns the value of the first argument raised to the power of the second argument.

double powerValue = Math.pow(2, 3); // powerValue is 8.0

exp(): Returns Euler’s number e raised to the power of a double value.
double expValue = Math.exp(1); // expValue is approximately 2.718
log(): Returns the natural logarithm (base e) of a double value.

double logValue = Math.log(10); // logValue is approximately 2.302
log10(): Returns the base 10 logarithm of a double value.

double logl0Value = Math.log10(100); // logl0Value is 2.0

sin(): Returns the sine of the specified double value (angle in radians).
double sinValue = Math.sin(Math.PI / 2); // sinValue is 1.0

cos(): Returns the cosine of the specified double value (angle in radians).
double cosValue = Math.cos(0); // cosValue is 1.0

tan(): Returns the tangent of the specified double value (angle in radians).
double tanValue = Math.tan(Math.PI / 4); // tanValue is 1.0

asin(): Returns the arc sine of a value (result in radians).

double asinValue = Math.asin(1); // asinValue is PI/2

acos(): Returns the arc cosine of a value (result in radians).

double acosValue = Math.acos(0); // acosValue is PI/2

atan(): Returns the arc tangent of a value (result in radians).

double atanValue = Math.atan(1); // atanValue is P1/4

cbrt(): Returns the cube root of a double value.

double cbrtValue = Math.cbrt(27); // cbrtValue is 3.0

©

16.

17.

18.

19.

ceil(): Returns the smallest integer that is greater than or equal to the argument.

double ceilValue = Math.ceil(2.3); // ceilValue is 3.0

floor(): Returns the largest integer that is less than or equal to the argument.

double floorValue = Math.floor(2.7); // floorValue is 2.0

round(): Returns the closest long or int to the argument.

long roundValue = Math.round(2.5); // roundValue is 3

random(): Returns a pseudorandom double value between 0.0 (inclusive) and 1.0 (exclusive).

double randomValue = Math.random(); // randomValue is between 0.0 and 1.0

Example:

public class MathExamples {

public static void main(String[] args) {
// Example of Math.abs()
int absValue = Math.abs(-10);
System.out.println (“Absolute wvalue of -10: “ + absValue);
// Example of Math.max() and Math.min()
int maxValue = Math.max(5, 10);
int minValue = Math.min (5, 10);
System.out.println (“Maximum value: “ + maxValue);
System.out.println (“Minimum wvalue: “ + minValue);
// Example of Math.sqgrt/()
double sqgrtValue = Math.sqrt(16);
System.out.println (“Square root of 16: “ + sqgrtValue);
// Example of Math.pow ()
double powerValue = Math.pow(2, 3);

w

System.out.println(“2 raised to the power 3: + powerValue) ;
// Example of Math.sin()

double sinvValue = Math.sin(Math.PI / 2);
System.out.println (“Sine of PI/2: “ + sinValue);

// Example of Math.random /()

double randomValue = Math.random() ;

System.out.println (“Random value: “ + randomValue);

SOLVED PROGRAM

1. Write a program in Java to calculate the hypotenuse of a right-angled triangle.

Ans: public class HypotenuseCalculator {

public static void main(String[] args) {
double sideA = 3.0;
double sideB = 4.0;

double hypotenuse = Math.sqgrt (Math.pow(sideA, 2) + Math.pow(sideB, 2));
System.out.println (“The hypotenuse is: “ + hypotenuse);

ICSE Computer Application-X

Output

<3 BlueJ): Terminal Window - chapterl

Options

The hypotenuse is: 5.0

2. Write a program in Java to calculate the area of a circle.

Ans:

public class CircleAreaCalculator {

public static void main(String[] args) {
double radius = 5.0;
double area = Math.PI * Math.pow(radius,

2);

System.out.println (“"The area of the circle is:

A\

4B Blue): Terminal Window - chapterl

Options

The area of the circle is: 78.53981633974483

<l

3. Write a program in Java to Generate a Random Number within a Range

Ans: public class RandomNumberGenerator {
public static void main(String[] args) {
int min = 1;
int max = 100;
int randomNumber = (int) (Math.random() *

System.out.println (“Random number between “ + min + “

}

(max

and Y + max + “:

X
+ area);
O X
)<
] >
min + 1) + min);

Y+ randomNumber) ;

<% Blue): Terminal Window - chapterl

Options

Random number between 1 and 108: 71

v<>

<[

4. Write a program in Java to calculate the exponential value.

public class ExponentialCalculator {
public static void main(Stringl]
double value = 2.0;
double result = Math.exp(value);

Ans:

args) |

System.out.println (“"The exponential value of “ + wvalue + ™

ICSE Computer Application-X

Y 4+ result);

is:

<A BlueJ: Terminal Window - chapterl = O X

The exponential value of 2.0 is: 7.38905609893065
<[] >

5. Write a program in Java to convert radians to degrees.

Ans: public class RadiansToDegreesConverter {

public static void main(String[] args) {
double radians = Math.PI;
double degrees = Math.toDegrees (radians);

AN AN w

System.out.println (“Radians: + radians +

}

is equal to Degrees: + degrees) ;

43 BlueJ: Terminal Window - chapter1 - o X
Options
Radians: 3.141592653589793 is equal to Degrees: 180.0 &
) { . vh1 IF] 1N |

CONDITIONAL STATEMENTS IN JAVA

Conditional statements in Java are used to execute specific blocks of code based on certain conditions. These
statements allow the program to make decisions and control the flow of execution. Here’s a summary of
the main conditional statements in Java:

1. if Statement: The if statement evaluates a condition, and if the condition is true, the code block inside
the if statement is executed.

Syntax of if Statement:
if (condition) { l
block of code // 1is executed if the condition 1is true
}
Here condition will either be evaluated as true or false. If the value is true,
then a block of code will be executed. Otherwise, it will ignore it and skip

Test Expression

)) true | false

to the statement just below the if command.
Body of if

The test expression is first evaluated as indicated in the above diagram, l
and if the evaluation yields a true result, the body of the If statement is _
then executed; otherwise, the ‘if” block is skipped and execution takes place Stafdnzif;gu“
below it.
Example:

Flowchart of If-statement
class 1if condition {

public static wvoid main(String[] args) {
double a = 0.5;

ICSE Computer Application-X

o

if (a>0)
{

System.out.println(a + “ is a Positive Number!”);

Output
<A Blue): Terminal Window - tfc -] X
Options
0.5 is a Positive Number! %
<\ J >

2. If-Else Statement: If-Else statement is a control structure that selects or chooses a set of statements
depending upon certain conditions.

If statements are like a subset of if-else statements.

if Clause True False else Clause

Execute Statement under if Execute Statement under else

Flowchart of if-else statement

Syntax:
if (condition)
{
//Statements to be executed if condition satisfies
}

else

{

//Statements to be executed if the condition is not satisfied

}

Working of if-else statements

Here, the if clause evaluates the expression. If it comes EXTRA TIME

assssssssssssassas
0000000000000 00000000 eoe

out as true, statements under if block gets executed. Else,
statements under the else block get executed. As you
can observe here, depending upon the condition some
sets of statements are executed and some are bypassed.

An else clause should always come after the if
clause. If not, then the compiler will generate an
error stating “misplaced else”

Example:
class 1f else condition {
public static void main(String[] args) {
double a = -0.5;

ICSE Computer Application-X a

if (a>0)

System.out.println(a + “ is a Positive Number!”);

System.out.println(a + “ 1is a Negative Number!”);

<& Bluel: Terminal Window - tfc
Options

:8.5 is a Negative Number!
<[

v/ <3|

3. Nested If-Else Statements: Nested means within. Nested if condition means if-within-if. Nested if
condition comes under decision-making statement in Java. There could be infinite if conditions inside
an if condition. The below syntax represents the Nested if condition.

!

Nested Test
Expression

Test Expression

false false

A v
Body of else Elody O,f EHEIy @F
Nested if Nested else
’ J

v

Statement just

below if

'

Flowchart of Nested if statement
Syntax:
if conditionl {

// Executes when conditionl 1is true

if condition2 {

// Executes when condition2 is true

}
Example:

// Write a program to illustrate the

ICSE Computer Application-X

// use of nested if statement
public class NestedIfElseExample {

public static wvoid main(String[] args)
int x = 30;
int y = 10;
int z = 20;

if (x > vy) |
if (x > z) {
System.out.println (“x
} else {
System.out.println (“z
}
} else {
if (y > z) |
System.out.println(“y
} else {
System.out.println(“z

Output

{

is

is

is

is

the

the

the

the

largest

largest

largest

largest

number.

number.

number.

number.

<& Blue): Terminal Window - tfc
Options

x 1s the largest number.
<l

wl<o]

4. Switch Statement: The switch statement is used to select one of many code blocks to be executed
based on the value of an expression. It is a more readable alternative to using multiple if-else statements
when dealing with many possible values of a variable.

int day = 3;
String dayName;
switch (day) {
case 1:
dayName = "“Monday”;
break;
case 2:
dayName = “Tuesday”;
break;
case 3:
dayName = “Wednesday”;
break;
case 4:
dayName = "“Thursday”;
break;
case 5:
dayName = “Friday”;
break;
case 6:
dayName = “Saturday”;

ICSE Computer Application-X

break;
case 7:

dayName = "“Sunday”;
break;

default:
dayName = "“Invalid day”;
break;

}
System.out.println(“Day of the week: “ + dayName);

UNUSUAL TERMINATION OF A PROGRAM(SYSTEM.EXIT(0))

The System.exit(0) method in Java is used to terminate the currently running Java Virtual Machine (JVM)
and end the program. The 0 argument indicates a normal termination, while any non-zero value indicates
an abnormal termination.

Example:
public class UnusualTermination {
public static void main(String[] args) {
System.out.println (“Program started.”);
// Perform some tasks
for (int i = 0; 1 < 5; i++) {
System.out.println(“Task ™ + (1 + 1));

}
// Terminate the program
System.out.println (“Terminating the program...”);
System.exit (0);
// The following line will never be executed
System.out.println (“This line will not be printed.”);

SOLVED PROGRAMS

1. Write a program in Java to checks if a number is positive.

Ans: public class IfStatementExample {
public static void main(String[] args) {
int number = 10;
// If statement
if (number > 0) {
System.out.println (“The number is positive.”);

}
2. Write a program in Java to checks if a number is positive or negative/zero.

Ans: public class IfElseStatementExample {
public static void main(String[] args) {
int number = -10;
// If-Else statement
if (number > 0) {
System.out.println (“"The number is positive.”);
} else {

ICSE Computer Application-X

System.out.println (“The number is negative or =zero.”);

}

3. Write a program in Java to checks if a number is positive, negative, or zero using nested if

statements.

Ans: public class NestedIfStatementExample {
public static void main(String[] args) {

int number = 0;

// Nested If statement

if (number >= 0)

if (number =

} else {

{

= 0) |
System.out.println (“The number is zero.”);

System.out.println (“"The number is positive.”);

}

} else {

System.out.println (“The number is negative.”);

}

4. Write a program in Java to prints the name of the day based on the day of the week.

Ans: public class SwitchStatementExample {
public static void main(String[] args) {
int dayOfWeek = 3;
// Switch statement

switch (dayOfWeek)
case 1:

System.

break;
case 2:

System.

break;
case 3:

System.

break;
case 4:

System.

break;
case 5:

System.

break;
case 6:

System.

break;
case 7:

System.

break;
default:

System.

{

out

out

out

out

out

out

out

out

.println (“Monday”) ;

.println (“Tuesday”) ;

.println (“Wednesday”) ;

.println (“Thursday”);

.println(“Friday”);

.println (“Saturday”);

.println (“Sunday”) ;

.println(“Invalid day of the week.”);

ICSE Computer Application-X

break;

}
5. Write a program in Java to calculate the volume of solids, viz. cuboid, cylinder and cone can
be calculated by the formula:
Volume of a cuboid (v = I*b*h)
Volume of a cylinder (v = m*rA2*h)
Volume of a cone (v = (1/3)*m*rA2*h)
Using a switch case statement, write a program to find the volume of different
solids by taking suitable variables and data types.

Ans: import java.util.Scanner;
public class VolumeCalculator {
public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
System.out.println (“Enter the shape (1: Cuboid, 2: Cylinder, 3: Cone):”);
int shape = scanner.nextInt();
double volume = 0;
switch (shape) {
case 1:
System.out.println (“Enter the length, width, and height of the cuboid:”);

double length = scanner.nextDouble() ;
double width = scanner.nextDouble ()
double height = scanner.nextDouble();
volume = length * width * height;
break;

case 2:

System.out.println (“Enter the radius and height of the cylinder:”);
double radiusCylinder = scanner.nextDouble();
double heightCylinder = scanner.nextDouble () ;
volume = Math.PI * Math.pow(radiusCylinder, 2) * heightCylinder;
break;
case 3:
System.out.println (“Enter the radius and height of the cone:”);

double radiusCone = scanner.nextDouble();
double heightCone = scanner.nextDouble () ;
volume = (1.0 / 3.0) * Math.PI * Math.pow(radiusCone, 2) * heightCone;
break;
default:

System.out.println (“Invalid shape choice!”);
System.exit (0) ;

}

System.out.println (“Wolume of the solid:

A\

+ volume) ;

scanner.close();

ICSE Computer Application-X

Output

<& Bluek Terminal Window - vbd - a e
Options

Enter the shape (1: Cuboid, 2: Cylinder, 3: Cone):

3
Enter the radius and height of the cone:
12

13

Volume of the solid: 1968.3538158406308

ITERATIVE CONSTRUCT IN JAVA

Iterative constructs in Java are used to execute a block of code repeatedly based on certain conditions.
These constructs are essential for tasks that require repeated execution, such as processing items in a list or
performing operations until a certain condition is met. Here’s an overview of the main iterative constructs
in Java:

1. for Loop: The for loop is used when the number of iterations is known beforehand. It consists of an
initialization, a condition, and an increment/decrement operation.

Syntax:
for (initialization; condition; update) {
// Code to be executed
}

Example:
for (int 1 = 0; 1 < 5; i++) |
System.out.println (“Iteration: “ + 1i);
}
This loop will print the numbers 0 to 4.
2. while Loop: The while loop is used when the number of iterations is not known and the loop needs
to continue until a certain condition becomes false. It checks the condition before executing the loop

body.

Syntax:
while (condition) {
// Code to be executed
}
Example:
int i = 0;
while (i < 5) {
System.out.println(“Iteration:
it++;

wg i),'

}
This loop will also print the numbers 0 to 4.

3. do-while Loop: The do-while loop is similar to the while loop, but it guarantees that the loop body
is executed at least once because the condition is checked after the execution of the loop body.

ICSE Computer Application-X @

Syntax:
do {
// Code to be executed
} while (condition);

Example:
int 1 = 0;
do {
System.out.println (“Iteration: “ + 1i);
i++;

} while (i < 5);
This loop will print the numbers 0 to 4 as well.

BREAK STATEMENT IN JAVA

The break statement is used to exit a loop or switch statement prematurely. When break is encountered,
the control is transferred to the statement immediately following the loop or switch.

Example:
public class BreakExample ({
public static wvoid main(String[] args) {
for (int i = 1; 1 <= 10; i++) |
if (1 == 5) {

break; // Exit the loop when i is 5

}
System.out.println (i) ;

}

System.out.println (“Loop terminated.”);
}

CONTINUE STATEMENT

The continue statement skips the current iteration of a loop and proceeds to the next iteration. Unlike
break, continue does not terminate the loop; it simply skips the remaining code in the current iteration
and moves to the next iteration of the loop.

Example:
public class ContinueExample {
public static wvoid main(String[] args) {
for (int i = 1; 1 <= 10; 1i++) {
if (1 == 5) {

continue; // Skip the rest of the loop body when i is 5

}
System.out.println(i);

}
System.out.println (“Loop completed.”);

ENTRY AND EXIT CONTROLLED LOOP

In Java, loops can be categorized as either entry-controlled or exit-controlled based on when the condition

ICSE Computer Application-X

is evaluated.

Entry-Controlled Loop
An entry-controlled loop is one where the condition is checked before the loop body is executed. If the
condition is true, the loop body is executed; otherwise, the loop is skipped entirely. Common entry-controlled

loops in Java are for and while loops.

Example: for Loop (Entry-Controlled)

public class ForLoopExample {
public static wvoid main(String[] args) {
for (int 1 = 1; 1 <= 5; i++) {
System.out.println (“Iteration “ + 1);

}

Example: while Loop (Entry-Controlled)

public class WhileLoopExample {
public static void main(String[] args) {
int 1 = 1;
while (i <= 5) {
System.out.println (“Iteration “ + 1);
i++;

}

Exit-Controlled Loop
An exit-controlled loop is one where the condition is checked after the loop body is executed. This means
the loop body is executed at least once, regardless of whether the condition is true or false. The do-while

loop in Java is an example of an exit-controlled loop.

Example: do-while Loop (Exit-Controlled)
public class DoWhileLoopExample {

public static void main(String[] args) {
int 1 = 1;
do {

System.out.println (“Iteration “ + 1);
i++;
} while (i <= 5);

SOLVED PROGRAMS

1. Write a program in Java to print the sum of the first 10 natural numbers using for loop.

Ans: public class SumForLoop |{

public static void main(String[] args) {
int sum = 0;
for (int 1 = 1; i <= 10; 1i++) {

sum += 1;

}

System.out.println (“Sum of the first 10 natural numbers: “ + sum);

}

ICSE Computer Application-X @

2. Write a program in Java to print factorial of a number using while loop.

Ans: public class FactorialWhileLoop {
public static void main(String[] args) {
int number = 5;
int factorial = 1;
int 1 = 1;
while (i <= number) {
factorial *= 1i;
it++;
}

System.out.println (“Factorial of “ + number + “ is: “ + factorial);

}
3. Write a program in Java to print reverse a number using do-while loop.

Ans: public class ReverseNumberDoWhile {
public static void main(String[] args) {

int number = 12345;

int reverse = 0;

do |
int digit = number % 10;
reverse = reverse * 10 + digit;
number /= 10;

} while (number != 0);

System.out.println (“Reversed number is: “ + reverse);

}

4. Write a program in Java to print print fibonacci series up to n terms using for loop.

Ans: public class FibonacciForLoop {
public static void main(String[] args) {
int n = 10;
int firstTerm = 0, secondTerm = 1;
System.out.print (“Fibonacci Series up to “ + n + “ terms: “);
for (int i = 1; 1 <= n; ++i) |
System.out.print (firstTerm + “ “);
// compute the next term

int nextTerm = firstTerm + secondTerm;
firstTerm = secondTerm;
secondTerm = nextTerm;

}
5. Write a program in Java to print sum of digits of a number using while loop.

Ans: public class SumOfDigitsWhileLoop {

public static void main(String[] args) {
int number = 12345;
int sum = 0;
while (number != 0) {

oe

sum += number
number /= 10;

ICSE Computer Application-X

10;

System.out.println (“Sum of digits: “ + sum);

NESTED LOOP IN JAVA

Nested loops in Java are loops within loops. They are useful for dealing with multi-dimensional data
structures, such as matrices, or for performing repetitive tasks that require multiple levels of iteration.

Syntax

Example 1: Nested for Loops
public class NestedLoopsExample {

public static void main(String[] args) {
int rows = 5;
int columns = 5;
for (int i = 1; 1 <= rows; 1i++) {
for (int j = 1; J <= columns; Jj++) {
System.out.print(i * j + “\t”); // Print the product of i and j

}

System.out.println(); // Move to the next line after each row

}

Example 2: Nested while Loops
public class NestedWhileLoops {

public static void main(String[] args) {
int rows = 4;
int i = 1;

while (i <= rows) {

int 3 = 1;

while (3 <= i) {
System.out.print (“*”); // Print star
J++s;

}
System.out.println(); // Move to the next line
i++;

Output
*
* K
* kK

* kKK

Example 3: Nested for and while Loops
public class NestedForWhileLoops {

public static void main(String[] args) {
int rows = 3;
for (int 1 = 1; 1 <= rows; 1i++) {
int § = 1;

ICSE Computer Application-X

while (3 <= i) {
System.out.print(j + “ “); // Print numbers in ascending order
J++;
}
System.out.println(); // Move to the next line

Output

1
12
123

SOLVED PROGRAMS

1. Write a program in Java to print a table of 2 using nested for loop.

Ans: public class Tables {
public static void main(String[] args)
{
System.out.println(“Display Table: “);
// Outer for loop.
for(int 1 = 2; 1 <= 2; i++)
{
// Inner for loop.
for(int 3 = 1; J <= 10; Jj++) {
System.out.println (i+ “ * ™ +3+7 = “+ (i*j));
}

System.out.println(“ “);

Output
4K Blue!: Terminal Window - nested] X
Options
Display Table: -
2% 1 =2
2%x2=4
2*3 =06
2 %4=8
2*5 =10
2 *6=12
2 %7 =14
2 * 8=16
2 %9 =18
2 * 18 = 20
< b

2. Write a program in Java to print inverted pyramid star pattern.

*

* *

* % %

* k%%
* k% k%

ICSE Computer Application-X

Ans: public class Main {

public static void main(String[] args) {
// Outer loop for number of rows
for (int 1 = 1; 1 <= 5; i++) |
// Inner loop for number of stars in each row
for (int J = 1; 73 <= 1i; J++) |

System.out.print (“*”);

}
// Move to the next line after printing stars in each row
System.out.println() ;

}

3. Write a program in Java to generate star pyramid pattern using nested for loop.

*

* % %
* k%%
*k k%%

kkkkk*k

Ans: public class Pyramid {

public static void main(String[] args) {
int rows = 5;
for (int 1 = 1; 1 <= rows; 1i++) {
for (int j = 1; 3 <= rows - 1; J++) |

System.out.print (Y “);

}

for (int k = 1; k <= 2 * 1 - 1; k++) {
System.out.print (“*”);

}

System.out.println () ;

}

4. Write a program to print the following pattern.

*
* % %
* k Kk %
* %k k Kk %
I EEEER
X ¥ X ¥ ¥
¥ X ¥ ¥
¥ X ¥
X

Ans: import java.util.Scanner;
public class Main
{
public static wvoid main(String[] args)
{
//scanner class declaration
Scanner sc=new Scanner (System.in);
//taking user input
System.out.print ("Enter the number of row “);
int n=sc.nextInt();
//declare for loop for print first pyramid
for (int i=1;i<=n;i++)

ICSE Computer Application-X

for (int j=1;j<=n-1i;j++)
{
System.out.print (Y “);
}
for (int J=1;j<=1i*2-1;73++)
{
System.out.print (“*");
}
System.out.println();
}

//declare for loop for print reverse pyramid
for(int i=n-1;i>0;i--)
{
for (int j=1;j<=n-1i;j++)
{
System.out.print (Y “);
}
for (int J=1;j<=i*2-1;J++)
{
System.out.print (“*”);

}
System.out.println();

}
5. Write a program to print the following pattern.

A
B CD
EF GHI

Ans: public class Alpha {
public static void main(String[] args) {
int k = 65;
System.out.println (“Displaying alphabet pattern: “);
// Outer for loop.
for(int 1 = 65; i <= 69; 1 += 2)
{
// Inner for loop.
for(int j = 69; j >= 65; j--)
{
if(3 > 1)
System.out.print (“);
else
System.out.format (“sc “, kt++);
}
System.out.println(“ “);

ICSE Computer Application-X

JAVA PROGRAMS

1. Write a program in Java to calculate the square root of a number.

Ans: import java.util.Scanner;
public class SquareRootCalculator {

public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
System.out.print (“Enter a number: “);
double num = scanner.nextDouble();
double sqgrt = Math.sqgrt (num);
System.out.println (“Square root of ™ + num + “ is: “ + sqrt);

scanner.close();

}
2. Write a program in Java to calculate the power of a number.

Ans: import java.util.Scanner;
public class PowerCalculator {

public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
System.out.print (“Enter the base: “);
double base = scanner.nextDouble () ;
System.out.print (“Enter the exponent: “);
double exponent = scanner.nextDouble();
double result = Math.pow(base, exponent);

System.out.println(base + “ raised to the power of “ + exponent + “ is: “ + result);

scanner.close();

}
3. Write a program in Java to calculate the absolute value of a number

Ans: import java.util.Scanner;
public class AbsoluteValueCalculator ({

public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
System.out.print (“Enter a number: “);
double num = scanner.nextDouble () ;
double absValue = Math.abs (num);

System.out.println (“Absolute value of “ + num + “ is: “ + absValue);

scanner.close () ;

}
4. Write a program in Java to generate random numbers.

Ans: public class RandomNumberGenerator |

public static void main(String[] args) {
for (int i = 0; 1 < 5; 1i++) {
double randomNumber = Math.random(); // Generates a random number between 0.0 and 1.0

System.out.println (“Random number “ + (i + 1) + “: “ + randomNumber) ;

ICSE Computer Application-X

Ans:

Ans:

7.
Ans:

Write a program in Java to calculate the trigonometric values (sine, cosine, and tangent) of an
angle.

import Jjava.util.Scanner;
public class TrigonometricCalculator ({
public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
System.out.print (“Enter an angle in degrees: “);

double degrees scanner.nextDouble () ;

double radians = Math.toRadians (degrees);

double sinValue = Math.sin(radians);

double cosValue = Math.cos(radians);

double tanValue = Math.tan(radians);

System.out.println(“Sine of “ + degrees + “ degrees is: “ + sinValue);
System.out.println(“Cosine of “ + degrees + “ degrees is: “ + cosValue);

AN w

System.out.println (“Tangent of + degrees + degrees is: “ + tanValue);

scanner.close () ;

}
Write a program in Java to check if a number is prime.

import Jjava.util.Scanner;
public class PrimeNumberCheck ({
public static void main(String[] args) {

Scanner scanner = new Scanner (System.in);
System.out.print (“Enter a number: “);
int num = scanner.nextInt();
boolean isPrime = true;
if (num <= 1) {

isPrime = false;
} else {
for (int 1 = 2; 1 <= num / 2; 1i++) {
if (num % i == 0) {
isPrime = false;
break;

}
if (isPrime) {

w

System.out.println (num + is a prime number.”);

} else {

w

System.out.println (num + is not a prime number.”);

}

scanner.close () ;

}
Write a program in Java to sum of digits of a number.

import java.util.Scanner;
public class SumOfDigits {
public static void main(String[] args) {

ICSE Computer Application-X

Scanner scanner = new Scanner (System.in);
System.out.print (“Enter a number: “);

int num = scanner.nextInt();
int sum = 0;
while (num != 0) {

sum += num % 10;

num /= 10;

}

System.out.println (“Sum of the digits is: “ + sum);
scanner.close();

}
8. Write a program in Java to factorial of a number.

Ans: import java.util.Scanner;
public class Factorial {
public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);

System.out.print (“Enter a number: “);

int num = scanner.nextInt();
int factorial = 1;
for (int i1 = 1; 1 <= num; i++) {

factorial *= 1i;
}
System.out.println (“Factorial of “ + num + “ is: “ + factorial);

scanner.close();

}
9. Write a program in Java to reverse a number.

Ans: import java.util.Scanner;
public class ReverseNumber {
public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);

\\) .
’

System.out.print (“Enter a number:

int num = scanner.nextInt();

int reverse = 0;

while (num !'= 0) {
int digit = num % 10;
reverse = reverse * 10 + digit;
num /= 10;

}

System.out.println (“Reversed number is:

AN

+ reverse);

scanner.close();

}
10. Write a program in Java to print fibonacci series.

Ans: import java.util.Scanner;
public class FibonacciSeries {
public static void main(String[] args) {

ICSE Computer Application-X

Scanner scanner = new Scanner (System.in);
System.out.print (“Enter the number of terms: “);
int terms = scanner.nextInt();
int first = 0, second = 1;
System.out.print (VFibonacci Series: “ + first + “ “ + second);
for (int 1 = 3; 1 <= terms; i++) {
int next = first + second;
System.out.print (Y “ + next);
first = second;
second = next;

}

scanner.close () ;

KEY TERMS

> Class: A class is a blueprint for creating objects. It defines a data type by bundling data and methods that
work on that data into one single unit.

> Object: An object is an instance of a class. It is a concrete realization of a class that occupies memory and
can have attributes and methods.

> Inheritance: Inheritance is a mechanism where one class (subclass) inherits the properties and methods of
another class (superclass).

» Polymorphism: Polymorphism allows objects of different classes to be treated as objects of a common
superclass. It includes method overriding and method overloading.

> Abstraction: Abstraction is the concept of hiding the implementation details and showing only the functionality
to the user. It is achieved using abstract classes and interfaces.

Summary e

< OOPs is a programming paradigm based on the concept of objects, which can contain data in the form of fields and code
in the form of methods. The core principles are Encapsulation, Inheritance, Polymorphism and Abstraction.

< Class: A blueprint or template for creating objects. It defines a data type by bundling data (attributes) and methods
(functions) that operate on the data.

¢ Object: An instance of a class. It represents a specific realization of the class with concrete values for its attributes.

» Primitive Data Types: Basic types provided by Java. Includes int, char, boolean, double, etc.

¢ Non-Primitive Data Types: Also known as reference types. Includes String, arrays, classes, and interfaces.

< Arithmetic Operators: Used for mathematical operations. Examples include +, -, *, /, %.

< Relational Operators: Used to compare values. Examples include ==, =, > < >= <=
< Logical Operators: Used for logical operations. Examples include && (AND), || (OR), ! (NOT).
< Assignment Operators: Used to assign values to variables. Examples include =, +=, =, *=, /=

< Using Scanner: A common way to get user input in Java.

< Command Line Arguments: Data passed to the program at runtime via the command line.
< For Loop: Repeats a block of code a specific number of times.

< While Loop: Repeats a block of code as long as a condition is true.

< Do-While Loop: Similar to the while loop, but guarantees that the code block is executed at least once.

@ ICSE Computer Application-X

Exercises - 1 (Solved)

A. Multiple choice questions.
1.

[Understanding]

What is the main principle of OOP that involves hiding internal state and requiring all interaction

to be performed through an objects methods?

a. Inheritance b. Polymorphism c. Encapsulation d. Abstraction

2. Which OOP concept allows one class to inherit the properties and behaviours of another class?
a. Polymorphism b. Encapsulation c. Inheritance d. Abstraction

3. Which OOP principle enables one interface to be used for a general class of actions?
a. Encapsulation b. Abstraction c. Inheritance d. Polymorphism

4. What is the term for a class that is designed to be inherited by other classes?
a. Derived class b. Subclass c. Base class d. Super class

5. What is a class in Java?
a. A blueprint for creating objects

c. An object itself

b. A data type
d. A method in Java
6. Which of the following is a correct way to create an object in Java?
a. Object obj = new Object(); b. Object obj = Object.new();

c. new Object obj = new Object(); d. Object obj = Object.create();

7. Which method is used to initialize an object in Java?

a. finalize() b. initialize() c. constructor d. setup()

8. What is the default value of an instance variable of type int in Java?
a. 0 b. null c. 1 d -1

9. How do you access a method from an object in Java?
a. object.methodName(); b. methodName.object();

c. object.callMethod(); d. object.method();
10. Which keyword is used to access members of a superclass from a subclass?
a. this b. super c. base d. parent
ANSWERS
1. c. 2. c 3. d 4. c. 5. a. 6. a. 7. c. 8. a. 9. a. 10. b.
B. Fill in the blanks. [Recall]

1. In Java, the keyword is used to execute a block of code if a specified condition is true.

2. The statement allows you to choose between multiple blocks of code based on the value
of a variable.
3. The keyword is used to specify an alternative block of code to be executed if the

condition in an if statement is false.

4. To test multiple conditions in a single if statement, you can use
(AND) and || (OR).

operators such as &&

©

ICSE Computer Application-X

5. The keyword can be used within a switch statement to exit from the switch block and
prevent fall-through.
6. In a switch statement, if no matching case is found, the block will be executed if it is
present.
7. The _ keyword is used to exit from a loop or switch statement prematurely.
To skip the remaining statements in the current iteration of a loop and proceed to the next iteration,
use the keyword.
9. The statement is used to execute a block of code repeatedly based on a condition being
true.
10. The loop is guaranteed to execute its block of code at least once, regardless of the
condition.
ANSWERS
1. if 2. switch 3. else 4. logical 5. break
6. default 7. break 8. continue 9. while 10. do-while
C. State the following statements are True or False. [Recall
1. Scanner class is used for input in Java.
2. System.out.println() is used to read input from the user.
3. You can use readInt() method of the Scanner class to read integer values.
4. Scanner can only read data from the console.
5. The Math.sqrt() method returns the square root of a number.
6. The Math.pow() method is used to calculate the power of a number.
7. The Math.abs() method can only be used with integer values.
8. The Math.random() method generates a random integer value.
9. The for loop in Java can only be used for iteration with a predefined number of iterations.
10. The while loop continues executing as long as its condition evaluates to true.
D. Very short answer type questions. [Understanding]
1. What does OOP stand for?
Ans: The full form of OOP is Object-Oriented Programming.
2. What keyword is used to create a class in Java?
Ans: class.
3. What is an object in Java?
Ans: An instance of a class.
4. Which keyword is used to inherit a class in Java?
Ans: extends.
5. What is encapsulation?
Ans: Hiding the internal state of an object and requiring all interaction to be done through methods.

©

ICSE Computer Application-X

6. What is the result of 4 + 2 in Java?
Ans: 6
7. What operator is used for logical AND in Java?
Ans: &&.
8. How do you declare a variable as a constant in Java?
Ans: Use the final keyword.
9. What is the purpose of the ++ operator?
Ans: To increment a variable by 1.
10. What is the result of 10 % 3 in Java?
Ans: 1
E. Short answer type questions. [Analysis]
1. Describe the switch statement in Java. How does it work? Provide an example.
Ans: The switch statement allows a variable to be tested for equality against a list of values. Each value is
called a case, and the variable being switched on is checked for each case.
int day = 2;
switch (day) {
case 1:
System.out.println (“Monday”) ;
break;
case 2:
System.out.println (“Tuesday”) ;
break;
default:
System.out.println (“Invalid day”);
}
2. How do you declare a variable in Java?
Ans: int x = 10; (variable type, name, and initial value).
3. Explain the different types of control statements in Java with examples.
Ans: Control statements in Java manage the flow of execution. They include:
i. Selection statements: if, if-else, switch.
ii. Iteration statements: for, while, do-while.
iii. Jump statements: break, continue
Example:

ICSE Computer Application-X

int number = 10;
if (number > 5) {

System.out.println (“Number is greater than 5”);
} else {

System.out.println (“Number is 5 or less”);
}
switch (number) ({

case 10:

System.out.println (“Number is 10”);

break;

default:
System.out.println (“Number is not 10”);

}
4. How do you write an if-else statement in Java?

Ans: if (condition) {
// code
} else {
// code
}

5. Explain the structure and use of a for loop in Java with an example.

Ans: The for loop is used to execute a block of statements repeatedly until a specified condition is true.
The structure includes initialization, condition, and increment/decrement.
for (int 1 = 0; i < 5; 1i4+4) {
System.out.println (“Iteration: “ + 1i);
}
This loop will print “Iteration: 0” to “Iteration: 4”

6. Compare and contrast while and do-while loops with examples.

Ans: while loop: Checks the condition before executing the loop body.

int 1 = 0;

while (i < 5) ({
System.out.println (“Iteration: “ + 1i);
i++;

}

do-while loop: Executes the loop body at least once before checking the condition.

int 1 = 0;

do {
System.out.println (“Iteration: “ + 1i);
i++;

} while (i < 5);

7. Write a program using a nested for loop to print a multiplication table up to 5x5.

Ans: public class MultiplicationTable {

public static void main(String[] args) {
for (int 1 = 1; 1 <= 5; 1i++) {
for (int 3 = 1; 3 <= 5; J++) |

System.out.print (i * J + “\t”);

}
System.out.println();

}
8. How do you use the break statement within a loop? Provide an example.

Ans: The break statement terminates the loop immediately.
for (int 1 = 0; i < 10; 1i++) {
if (1 == 5) {
break;

}

System.out.println (“Iteration: “ + 1i);

ICSE Computer Application-X

This loop will print “Iteration: 0” to “Iteration: 4” and then stop.
9. Explain the use of the continue statement in a loop with an example.

Ans: The continue statement skips the current iteration of the loop and proceeds to the next iteration.

for (int i = 0; i < 10; 1i++) {
if (1 % 2 == 0) {
continue;

}
System.out.println (“0dd number: “ + 1i);

}
This loop will print odd numbers between 0 and 9.

10. Describe how to read user input from the console using the Scanner class. Provide a program
that reads a name and age from the user.

Ans: import java.util.Scanner;
public class UserInput {
public static void main(String[] args) {

Scanner scanner = new Scanner (System.in);
System.out.print (“Enter your name: “);
String name = scanner.nextLine();
System.out.print (“Enter your age: “);
int age = scanner.nextInt();

w

System.out.println (“Name: + name);

System.out.println (“Age: “ + age);
scanner.close();

}

F. Application based questions. [Application]

1. You are developing an inventory management system for a small store. The system needs to
calculate the total cost of items in stock. Each item has a quantity and a price per unit. Write
a Java program to read the quantity and price for each item and calculate the total inventory
value using a loop.

Ans: import java.util.Scanner;

public class InventoryManagement {

public static void main(String[] args) {

Scanner scanner = new Scanner (System.in);

double totalvalue = O0;

for (int i = 0; 1 < 5; 1i++) {

System.out.print (“Enter quantity for item “ + (1 + 1) + “: W)

int quantity = scanner.nextInt();

System.out.print ("Enter price per unit for item “ + (1 + 1) + “: %),
double price = scanner.nextDouble ()

totalValue += quantity * price;

}
System.out.println(“Total inventory wvalue: $” + totalValue);

scanner.close();

ICSE Computer Application-X

2. A bank offers different interest rates based on the type of account. Using input in Java, write
a program to calculate the interest for a given principal amount, rate of interest, and time
period using the mathematical library method Math.pow() to compute compound interest.

Ans: import java.util.Scanner;
public class BankInterestCalculation {

public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
System.out.print (“Enter principal amount: “);
double principal = scanner.nextDouble();
System.out.print (“Enter rate of interest: “);
double rate = scanner.nextDouble();
System.out.print (“Enter time period (in years): “);
double time = scanner.nextDouble ()

System.out.print ("Enter number of times interest is compounded per year: “);

int n = scanner.nextInt();
double amount = principal * Math.pow((l1 + rate / (n * 100)), n * time);
double interest = amount - principal;

System.out.println (“Compound interest: $” + interest);

scanner.close();

}

3. Develop a grade processing system for a class of students. The program should read the marks
of each student, calculate the average, and determine the highest and lowest marks using loops
and conditional statements.

Ans: import java.util.Scanner;
P J
public class GradeProcessingSystem {

public static void main(String[] args) {

Scanner scanner = new Scanner (System.in);

int[] marks = new int[10];

int sum = 0;

int highest = Integer.MIN VALUE;

int lowest = Integer.MAX VALUE;

for (int i = 0; 1 < marks.length; i++) ({
System.out.print (“Enter marks for student “ + (1 + 1) + “: %);
marks[i] = scanner.nextInt();

sum += marks[i];

if (marks[i] > highest) {
highest = marks[i];

}

if (marks[i] < lowest) {

lowest = marks[i];
}
}
double average = sum / (double) marks.length;
System.out.println (“Average marks: “ + average);

System.out.println (“Highest marks: “ + highest);
System.out.println (“Lowest marks: “ + lowest);

scanner.close();

ICSE Computer Application-X

4. Write a Java program that reads temperatures in Celsius from the user and converts them
to Fahrenheit until the user decides to stop. Use a loop to continuously read input and the
mathematical library method for the conversion.

Ans: import java.util.Scanner;
public class TemperatureConversion {
public static void main(String[] args) {

Scanner scanner = new Scanner (System.in);

String choice;

do |
System.out.print (“Enter temperature in Celsius: “);
double celsius = scanner.nextDouble();
double fahrenheit = (celsius * 9 / 5) + 32;
System.out.println(, Temperature in Fahrenheit: , + fahrenheit);

System.out.print (“Do you want to convert another temperature? (yes/no): “);
choice = scanner.next();

} while (choice.equalsIgnoreCase (“yes”));

scanner.close () ;

}

5. A company wants to calculate the commission for its sales employees based on their sales.
Write a program that reads the sales amount for each employee and calculates the commission
using different rates based on the sales amount. Use loops to process multiple employees and
conditional statements to determine the commission rate.

Ans: import java.util.Scanner;
public class SalesCommission {

public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
System.out.print (“Enter the number of employees: “);
int numEmployees = scanner.nextInt();
for (int 1 = 0; 1 < numEmployees; i++) {

System.out.print ("Enter sales amount for employee “ + (i + 1) + “: “);
double sales = scanner.nextDouble();
double commission;
if (sales >= 10000) {

commission = sales * 0.1;
} else 1f (sales >= 5000) {

commission = sales * 0.05;
} else {

commission = sales * 0.02;

}
System.out.println (“Commission for employee ™ + (i + 1) + “: $” + commission);
}

scanner.close() ;

ICSE Computer Application-X

Exercises - 2 (Unsolved)

A. Multiple choice questions. [Understanding]
1. What is the size of an int data type in Java?
a. 8 bits b. 16 bits c. 32 bits d. 64 bits
2. Which of the following is a non-primitive data type in Java?
a. int b. char c. boolean d. String
3. What will be the result of 10 / 3 in Java?
a. 3.0 b. 3 c. 3.33 d. Error
4. Which data type can hold a decimal number in Java?
a. int b. char c. float d. boolean

5. What is the default value of a boolean variable in Java?

a. true b. false c 0 d. Null
6. What does the + operator do when used with Strings in Java?
a. Performs addition b. Concatenates the Strings
c. Performs subtraction d. Multiplies the Strings
7. Which operator is used to compare two values in Java?
a. = b. == c. = d =>
B. Fill in the blanks. [Recall]
1. The loop uses a condition to determine whether to continue looping and is used when
the number of iterations is not known in advance.
2. The loop is typically used when you know in advance how many times you need to
execute a block of code.
3. In a for loop, the statement initializes the loop control variable.
4. The part of a for loop specifies the condition that must be true for the loop to continue
executing.
5. The part of a for loop is executed after each iteration of the loop.
6. In a while loop, if the condition is always true, the loop will become an loop.
7. The keyword is used to skip the rest of the current loop iteration and move on to the
next iteration.
C. State whether the following statements are True or False. [Understanding]

1. The do-while loop executes its block of code at least once, regardless of the condition.

2.
3.
4.
5.
6.
7.

o

A break statement can be used to exit a for, while, or do-while loop.
The if-else statement can only have two branches.

The switch statement in Java can only be used with int and char types.
The ternary operator is a shorthand for the if-else statement.

The else part of an if-else statement is mandatory.

In Java, String is a primitive data type.

ICSE Computer Application-X

D. Very short answer type questions. [Understanding]
1. Which class is used to read input from the console in Java?

How do you create a Scanner object?

What method is used to read an integer from the console using Scanner?

How do you read a string input from the user?

What is the default delimiter for Scanner?

N » D

What loop is used when the number of iterations is known?

7. How do you exit a loop early in Java?

E. Short answer type questions. [Analysis]
1. Explain the difference between next() and nextLine() methods of the Scanner class.
2. How do you handle exceptions while reading input in Java? Provide an example.

3. Write a Java program that calculates and prints the area of a circle given its radius using the Math.
PI and Math.pow methods.

4. Explain the Math.abs() method with an example program.

5. Write a program to demonstrate the usage of the Math.random() method to generate a random
number between 1 and 100.

Describe the Math.max() and Math.min() methods with examples.
7. Write a program that uses Math.ceil() and Math.floor() methods to round a number up and down.

F. Previous year questions and answers [Analysis/Application]

1. Identify the type of operator &&: [ICSE 2023]
a. Ternary b. Unary c. Logical d. Relational

2. What value will Math.sqrt(Math.ceil(15.3)) return? [ICSE 2023]
a. 16.0 b. 16 c. 4.0 d. 5.0

3. The absence of which statement leads to fall through situation in switch case statement? [ICSE 2023]
a. continue b. break c. return d. System.exit(0)

4. int x = (int)32.8; is an example of typecasting. [ICSE 2023]
a. implicit b. automatic c. explicit d. coercion

5. The code obtained after compilation is known as: [ICSE 2023]
a. Source code b. Object code c. Machine code d. Java byte code

6. Missing a semicolon in a statement is what type of error? [ICSE 2023]
a. Logical b. Syntax c. Runtime d. No error

7. The number of bits occupied by the value @ are: [ICSE 2023]
a. 1 bit b. 2 bits c. 4 bits d. 16 bits

8. Consider the following program segment and select the output of the same when n = 10 :
[ICSE 2023]

©

switch (n)

{

case 10 : System.out.println(n*2);

ICSE Computer Application-X

case 4 : System.out.println(n*4); break;

default : System.out.println(n);
}
a. 20,80 b. 10, 4 c. 20,40 d. 10, 10
9. The number of bits occupied by the value ‘@ are: [ICSE 2023]
a. 1 bit b. 2 bits c. 4 bits d. 16 bits
10. Convert the following do...while loop to for loop: [ICSE 2023]
int x = 10;
do
{
X==;
System.out.print (x);
}
11. Convert the following do...while loop to for loop: [ICSE 2023]
int x = 10;
do
{
X==;
System.out.print (x);
}
12. Name the following: [ICSE 2023]

a. What is an instance of the class called?

b. The method which has same name as that of the class name.

Project Work [Application]
Create a simple library management system to keep track of books, members, and transactions
(issuing and returning books).

Lab Work [Application]
1. Write a program in Java to print a diamond shape star.

2. Write a program in Java to print a pyramid of numbers.

Scan the QR code for more solved questions.

@ ; Teacher’s Notes

» Encourage students to write Java code to solve each exercise and run their programs to see

\ \\\] the output
o Encourage students to continue practicing loops on their own and explore more complex
- loop patterns and applications

ICSE Computer Application-X

	CAP09PRV
	CAP10PRV

